NEW TRENDS IN MANAGEMENT OF HEAD INJURY

An essay submitted for partial fulfillment of master degree in anesthesiology

By Essam Abd Elmonsef Elsheikh M.B:B.CH

supervised by **Prof.Dr. Azza Youssef Ibrahim**

Professor of Anesthesia and intensive care Faculty of Medicine Ain Shams University

Dr. Enas Faten Ali Rashed

Assistant Professor of Anesthesia and intensive care Faculty of Medicine Ain Shams University

Dr. Waleed Abd El-megeed El-taher

Lecturer of Anesthesia and intensive care Faculty of Medicine Ain Shams University

> Department of anesthesiology Faculty of Medicine Ain Shams University

> > 2005

DEDICATION

I dedicate this work to

My parents and my sister

And all members of my family

For their help and assistance.

Acknowledgement

Many thanks to **Allah**, who granted me the ability to perform this essay.

I would like to express my sincere gratitude to **Prof. Dr.**Azza Youssef Ibrahim, Professor of Anesthesiology, Faculty of Medicine, Ain Shams University. Owing to her supervision I could proceed with this work. I am grateful to here for here guidance, helpful suggestion and valuable advice.

I would like also to thank **Dr. Enas Rashed** Assistant Professor of Anesthesiology Faculty of Medicine, Ain Shams University, for her encouragement.

I would like also to thank **Dr. Waleed El-taker** lecturer of Anesthesiology, Faculty of Medicine, Ain Shams University, for his great effort throughout the preparation for this work.

CONTENTS

CONTENTS

		РАGE
1. Introduction	•••••	1
2. Anatomy	•••••	3
3. Physiology	•••••	16
4. Pathophysiology	•••••	30
5. Monitoring	•••••	49
6. Management	•••••	64
7. Summary	•••••	118
8. References	•••••	120
9. Arabic summary		

LIST OF ABBREVIATIONS

Å angstrom

A-VDO2 Arteriovenous oxygen difference

BAPEs Brain stem auditory evoked potential

BBB Blood brain barrier

°C Celsius

CBF Cerebral blood flow

CBV Cerebral blood volume

c(GMP) Cyclic guanosine monophosphate

CMR Cerebral metabolic rate

CMRO2 Cerebral metabolic rate for oxygen

CNS Central nervous system

CO₂ Carbon dioxide

CPAP Continuous positive airway pressure

CPP Cerebral perfusion pressure

CPR Cardio pulmonary resustation

D5W 5% Dextrose in water

ECF Extracellular fluid

ECG Electrocardiography

EEG Electroencephalography

EPs Evoked potentials

GCS Glasgow coma score

H₂O Water

H₂O₂ Hydrogen peroxide

ICP Intracranial pressure

ICU Intensive care unit

HES Hetastarch

I.V. Intravenous

MAP Mean arterial pressure

MRI Magnetic resonant imaging

NaCl Sodium chloride

NMDA N-methyl-D-aspartate

NO Nitric oxide

N 2O Nitrous oxide

O2 Oxygen

PaO₂ Arterial partial pressure of oxygen

PACUs Post anesthesia care units

SAH Subarachnoid hemorrhage

SEPs Sensory evoked potentials

SJVO₂ Jugular bulb venous oxygen saturation

SSEPs Somatosensory evoked potentials

TBI Traumatic brain injury

TCD Transcranial Doppler

VEPs Visual evoked potentials

LIST OF FIGURES

Figure 1. Anatomy of the brain.	4
Figure 2. Lobes of the brain.	6
Figure 3. Functions of parts of the brain.	6
Figure 4. Layers of meninges.	13
Figure 5. Intracranial pressure-volume curve.	20
Figure 6 . The relationship between PaC02 and CBF.	22
Figure 7. The relationship between Pa02 and CBF.	22
Figure 8. Cerebral autoregulation curves.	23
Figure 9. relation of cerebral function and CMRO2.	25
Figure 10 . Effect of temperature reduction on (CMRO2).	26
Figure 11. Causes of secondary injury.	31
Figure 12. Calcium influx and its role in neuronal ischemia	34
Figure 13. Arachidonic cascade	36
Figure 14."No reflow" mechanisms	41

LIST OF FIGURES	LISTS
Figure 15. Intracranial pressure monitoring.	53
Figure 16. Jugular bulb catheter placement.	57
Figure 17. Principles of near infrared spectroscopy.	58

LIST OF TABLES LISTS

LIST OF TABLES

Table 1:		
Cranial nerves& its specialized features	S	15
Table 2: Normal Cerebral Physiological Values		16
ja v ig va ana		
Table 3:		
Respiratory abnormalities that may		42
occur after CNS injury.	••••	43
Table 4:		
Glasgow coma scale.		68
Table 5:		
Composition of commonly used		
intravenous fluids: Crystalloids.		100

INTRODUCTION

Head Injury is damage to living brain tissue caused by an external mechanical force. It is usually characterized by a period of unconsciousness lasting minutes, months or indefinitely. The resulting damage to the brain tissue impairs the individual's abilities both physically and mentally. (**Jones et al, 1994**).

Traumatic injury is a major health problem, both in terms of human death and disability, as well as financial costs. Injuries to the head (resulting in disabilities that surpass in severity injuries to any other body system injuries) are the most frequent cause of death due to trauma. With current knowledge head injury is the leading cause of death among people younger than 24 Years of age. (Sauaia et al, 1995).

The aim of therapy is to improve outcome by preventing secondary CNS damage. These secondary insults may cause permanent neurological damage and worsening of outcome if undetected and untreated. The purpose of continuous monitoring of the brain in the critical care unit is detection of these secondary insults, allowing for a more informed approach to treatment. (Chestnut et al, 1993).

The development in monitoring technology, in concern with our rapidly growing understanding of the function and malfunction of CNS, offer exciting new ways of monitoring the brain. Many of these methods are still experimental. But some provide important information that may have a dramatic effect on the outcome of head trauma patients. (Jones et al, 1994).

There was marked improvement in the outcome of head trauma patients in the past two decades. Thus, improvement can be related to the new trends in the management of head trauma patients which have changed recently. (Chestnut et al, 1993).

CEREBRAL ANATOMY

The nervous system is commonly divided into the central nervous system and the peripheral nervous system. The central nervous system is made up of the brain, its cranial nerves and the spinal cord. The peripheral nervous system is composed of the spinal nerves that branch from the spinal cord and the autonomic nervous system (divided into the sympathetic and parasympathetic nervous system); it controls response to stressful situations.

(Wada, et al , 1999).

The Brain:

Is the part of CNS enclosed inside the skull (figure 1). Morphological subdivision:

- **I-** THE CEREBRUM : Rt. &Lt. hemispheres.
- **II-** THE CEREBELLUM: below the posterior part of cerebrum.
- III- THE BRAIN STEM: formed of the following parts:

(From below upward):

- a) Medulla oblongata.
- b) Pons.
- c) Midbrain.
- d) Diencephalons (thalamus& related structure).

Anatomy of the Brain

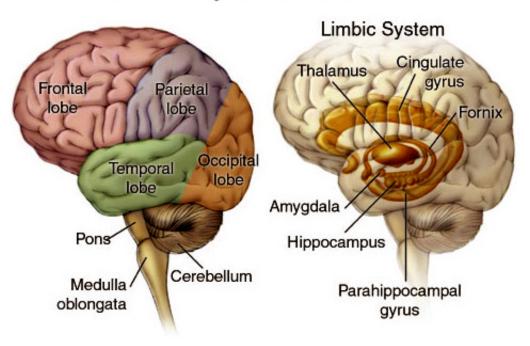


Figure 1. Anatomy of the brain (Wada et al., 1999).

PREHOSPITAL MANAGEMENT

The prehospital phase is perhaps the most critical interval in determining the ultimate outcome after clinical TBI. Critical to the outcome of acute head injury are rapid interventions to prevent secondary brain damage. A recent Study indicated that: the implementation of helicopter emergency service staffed by physicians who are expert in trauma care might reduce head-injured mortality rates (about a third of deaths occur after a brief period sometimes called "the golden hour"). (Prough et al, 1995).

Systemic parameters:

Owing to impaired cerebral autoregulation after trauma, hypovolemic hypotension that would not otherwise reduce CBF may lead to brain ischemia (Witt et al, 1992).

Thus, prompt application of basic life support, i. e., tracheal intubation, positive pressure ventilation with oxygen, and intravenous fluid resuscitation may limit secondary hypoxic brain damage. Concerns that adequate fluid resuscitation results in increased ICP after head injury appear to be unfounded. On a purely physiologic basis, it is reasonable to argue that cerebral circulation is so pressure – dependent immediately after TBI that even short – term support with vasopressors might be defensible. (Gross1990).