Serological detection of *Toxoplasma gondii* in chronic renal failure patients and in renal transplant recipients

Thesis

Submitted for the Partial Fulfillment of the M.Sc. degree in Parasitology

By Marwa Adel Elmallawany (M.B., B. Ch.)

Supervisors

Prof. Dr. Sayeda M. Aufy

Professor of Parasitology Faculty of Medicine, Cairo University

Prof. Dr. Mohamed Gamal El-din Saadi

Professor of Internal medicine Faculty of Medicine, Cairo University

Dr. Abeer Mohamed Mahgoub

Lecturer of Parasitology Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 2009

ACKNOWLEDGEMENT

First, I would like to express my sincerest gratitude and gratefulness to **Allah** who bless and fill me with hope, faith and patience that enable me to carry out all my daily work.

My deep gratitude and appreciation, great thanks to Prof. Dr. **Hoda Helmy**, Professor and Head of Parasitology Department, Faculty of Medicine, Cairo University, for her generous help and continuous support throughout this work.

I am greatly honored to express my thanks and gratitude to Prof. Dr. Sayeda M. Aufy, Professor of Parasitology, Faculty of Medicine, Cairo University, for guidance, great help encouragement and her creative support throughout the whole work up of this thesis.

I would like to express thanks and gratitude to Professor Dr. **Mohamed Gamal El-din Saadi**, Professor of Internal medicine, Faculty of Medicine, Cairo University, for his valuable help and advice for me to accomplish this work.

I am very much indebted to Dr. Abeer Mohamed Mahgoub, Lecturer of Parasitology, Faculty of Medicine, Cairo University, for her kind supervision, valuable advices, constructive criticism and indispensable help throughout this work.

Last but not least, I would like to thank **my family** for their great help and support and every person who helped me during this work especially **my dear colleagues** in Parasitology Department, Faculty of Medicine, Cairo University, for their great help in this work.

ABSTRACT

Toxoplasma gondii antibodies were detected serologically in 78 patients with renal disease using ELISA technique. Patients were classified according to renal status; chronic renal failure not undergo haemodialysis group (19 cases), chronic renal failure undergo haemodialysis (30 cases), renal transplant recipient (29 cases), compared to 13 cases in control group. Seropositivity for anti-Toxoplasma IgG & IgM antibodies were 36.8% & 10.5% in renal failure patients not undergo haemodialysis, 56.7% &16.7% in patients undergo haemodialysis and 69% &24.1% in renal transplant recipients versus 23.1% & 0% in control group with statistical significant difference for anti-Toxoplasma IgG antibodies only.

KEY WORDS: *Toxoplasma gondii*, renal, haemodialysis, transplant, ELISA, IgG & IgM antibodies.

CONTENTS

	Page
Introduction and Aim of the work	1
Review of Literature	3
 Historical notes 	3
 Morphology and Ultrastructure 	4
• Life cycle	11
 Epidemiology 	14
 Pathogenesis of toxoplasmosis 	17
 Clinical manifestations and pathology 	18
• Immunology of <i>Toxoplasma</i>	30
 Diagnosis of toxoplasmosis 	51
• Treatment	75
Material and Methods	80
Results	96
Discussion	144
Summary and Conclusion	
Recommendations	158
References	160
Arabic Summary	205

LIST OF FIGURES

Figure No	Title	Page
1	Tachyzoites 100 X - Giemsa stain.	5
2	Schematic drawing of tachyzoite (left) and bradyzoite (right) of <i>Toxoplasma gondii</i> . The drawing is composites of electron micrographs.	7
3	Drawing of <i>T. gondii</i> ., enlarged view of the apical complex cytoskeleton.	7
4	In a smear of brain tissue, many bradyzoites of <i>Toxoplasma gondii</i> are seen within the cyst (Giemsa stain, 1000x).	9
5	Toxoplasma gondii unsporulated oocyst, unstained.	10
6	Toxoplasma gondii sporulated oocyst, unstained.	10
7	Diagram showing life cycle & mode of transmission of <i>T. gondii</i> .	11
8	Classic active toxoplasmic retinochoroidal lesion showing an old pigmented scar with an adjacent reactivation and mild vitreous inflammation.	23
9	A model of the gastro intestinal mucosal immune response to <i>Toxoplasma gondii</i> .	42
10	Diagram showing production of antibodies in toxoplasmosis.	45
11	Microplate of Bioelisa TOXO IgM (Immunocapture) kit.	87
12	Microplate ELISA –reader (Dynatech Company MRX).	87
13	Microplate of NovaLisa TM Toxoplasma IgG-ELISA.	92
14	Typical Calibration Curve drawn and used.	94

15	Histogram showing the clinical presentations suggestive of	110
	toxoplasmosis among the study groups.	
16	Histogram showing history of diabetes among the four study groups.	114
17	Histogram showing history of intake of immunosuppressive drugs among the four study groups.	115
18	Histogram showing history of blood transfusion among the four study groups.	116
19	Histogram showing qualitative results of the serological detection of specific anti- <i>Toxoplasma</i> IgM antibodies of the four study groups using IgM capture ELISA.	118
20	Histogram showing qualitative results of the serological detection of specific anti- <i>Toxoplasma</i> IgM antibodies of the four study groups using IgM capture ELISA.	120
21	Microplate of Bioelisa TOXO IgM (Immunocapture) kit showing different intensity of yellow color developed in the wells.	121
22	Histogram showing quantitative results of the serological detection of specific anti- <i>Toxoplasma</i> IgM antibodies of the four study groups using IgM capture ELISA.	122
23	Histogram showing qualitative results of serological detection of specific anti- <i>Toxoplasma</i> IgG antibodies of the four study groups using IgG- ELISA.	124
24	Microplate of NovaLisa TM <i>Toxoplasma</i> IgG-ELISA kit showing different intensity of yellow color developed in the wells.	125
25	Histogram showing quantitative results of serological detection of specific anti- <i>Toxoplasma</i> IgG antibodies of the four study groups using IgG -ELISA.	127
26	Relation between prevalence of anti- <i>Toxoplasma</i> IgG antibodies and age.	128
27	Relation between prevalence of anti- <i>Toxoplasma</i> IgM antibodies and age.	128
28	Histogram showing the relation between seropositivity of anti- <i>Toxoplasma</i> IgG antibodies and diabetes among the study	131

population.

29	Histogram showing the relation between seropositivity of anti- <i>Toxoplasma</i> IgM antibodies and diabetes among the study population.	132
30	Histogram showing relation between intake of immunosuppressive drugs and anti- <i>Toxoplasma</i> IgG antibodies among the renal patients.	133
31	Histogram showing relation between intake of immunosuppressive drugs and anti- <i>Toxoplasma</i> IgM antibodies among renal patients.	134
32	Histogram showing relation between blood transfusion and anti- <i>Toxoplasma</i> IgG antibodies among renal patients.	135
33	Histogram showing relation between blood transfusion and anti- <i>Toxoplasma</i> IgM antibodies among renal patients.	136
34	Histogram showing the relation between haemodialysis and anti- <i>Toxoplasma</i> IgG antibodies among renal patients.	137
35	Histogram showing relation between haemodialysis and anti- Toxoplasma IgM antibodies among renal patients.	138
36	Histogram showing relation between seropositivity of anti- Toxoplasma IgM and IgG antibodies and duration of dialysis among in the group of renal failure patients undergo haemodialysis.	140
37	Pearson correlation between duration of dialysis and anti- Toxoplasma IgG antibodies level in renal failure undergo haemodialysis group.	141
38	Histogram showing the relation between seropositivity of anti- <i>Toxoplasma</i> IgM and IgG antibodies and duration of transplantation in renal transplant recipient group.	143

LIST OF TABLES

No.	Title	Page
1	Treatment schedule for toxoplasmosis.	77
2	Structural questionnaire	82
3	Master table Ia	97
4	Master table Ib	98
5	Master table Ic	99
6	Master table IIa	100
7	Master table IIb	101
8	Master table IIc	102
9	Master table IIIa	103
10	Master table IIIb	104
11	Master table IIIc	105
12	Master table IVa	106
13	Master table IVb	107
14	Master table IVc	108
15	Distribution of risk factors for contracting toxoplasmosis among the four study groups.	111
16	History of diabetes among the study groups.	114
17	History of intake of immunosuppressive drugs among the study groups.	115
18	History of blood transfusion among the study groups.	116
19	Results of serum urea and creatinine among the four study groups.	117
20	Qualitative results of the serological detection of specific anti- Toxoplasma IgM antibodies of the four study groups using	119

IgM capture ELISA.

21	Quantitative results of the serological detection of specific anti- <i>Toxoplasma</i> IgM antibodies of the four study groups using IgM capture ELISA.	122
22	Qualitative results of the serological detection of specific anti- Toxoplasma IgG antibodies of the four study groups using IgG- ELISA.	123
23	Quantitative results of serological test for specific anti- Toxoplasma IgG antibodies of the four study groups using IgG- ELISA.	126
24	Relation between seropositivity of anti- <i>Toxoplasma</i> IgG antibodies and diabetes among the study population.	131
25	Relation between seropositivity of anti- <i>Toxoplasma</i> IgM antibodies and diabetes among the study population.	132
26	Relation between intake of immunosuppressive drugs and anti- <i>Toxoplasma</i> IgG antibodies among renal patients.	133
27	Relation between intake of immunosuppressive drugs and anti- <i>Toxoplasma</i> IgM antibodies among the renal patients.	134
28	Relation between blood transfusion and anti- <i>Toxoplasma</i> IgG antibodies among renal patients.	135
29	Relation between blood transfusion and anti- <i>Toxoplasma</i> IgM antibodies among renal patients.	136
30	Relation between haemodialysis and anti-Toxoplasma IgG antibodies among renal patients.	137
31	Relation between haemodialysis and anti-Toxoplasma IgM antibodies among renal patients.	138
32	Relation between seropositivity of anti- <i>Toxoplasma</i> IgM and IgG antibodies and duration of dialysis among the group of renal failure patients undergo haemodialysis.	139
33	Relation between seropositivity of anti- <i>Toxoplasma</i> IgM and IgG antibodies and duration of transplantation in renal transplant recipient group.	142

LIST OF ABBREVIATIONS

AIDS Acquired immune deficiency syndrome

APCs Antigen presenting cells

AU Arbitrary Units

CA Circulating antigens

CAT Computerized axial tomography

CFT Complement fixation test

CGMC Comparative IgG profiles between mother and child test

CIEP Counter-current Immune Electrophoresis

CMI Cell mediated immune response

CNS Central nervous system

CRF Chronic renal failure

CT computed tomography

DCs Dendritic cells

DT Sabin-Feldman dye test

ELIFA Enzyme-linked immunofiltration assay

ELISA Enzyme linked immunosorbent assay

ES excretory/ secretory

ESRD End-stage renal failure

GRA Granular proteins

HIV Human immune deficiency virus

HRP Horseradish peroxidase

HS Highly SignificantHSP heat shock protein

IDO Indolamine-2,3dioxygenase

IEL Intraepithelial lymphocytes

IFA indirect fluorescent antibody assay

IFAT Indirect fluorescent antibody test

Ig Immunoglobulin

IHAT Indirect haemagglutination test

IL Interleukin

ISAGA IgM Immunosorbent agglutination assay

IU International Units per milliliter

LA Latex agglutination test

M Macrophages

MAT Modified direct agglutination test

MIC Microneme

mRNA Messenger ribonucleic acid

NK Natural killerNO Nitric oxide

NS Non-Significant

PAS Periodic acid-Schiff positive

PCR Polymerase Chain Reaction

PMNs Polymorphonuclear leukocytes

PV Parasitophorous vacuole

PVM PV membrane

RNI Reactive nitrogen intermediates

ROI Reactive oxygen intermediates

S Significant

SAG Surface antigen

SMX Sulfamethoxazole

T. gondii Toxoplasma gondii

TE Toxoplasmic encephalitis

Th T-helper

Thp T-helper precursor cells

TMB Tetramethylbenzidine

TMP Trimethoprim

TNF Tumor necrotic factor

TSPs Toxoplasma serologic profiles

W Week

Y Year

INTRODUCTION AND AIM OF THE WORK

Introduction and Aim of the work

Toxoplasma gondii is a ubiquitous protozoan parasite that is estimated to infect one-third of the world's human population (Weiss and Dubey, 2009).

Toxoplasmosis can cause fetal infection if it is acquired during pregnancy, with unpredictable manifestations in the fetus and neonate (*Foulon et al.*, 2000). Within immunocompetent humans, toxoplasmosis is benign and self limiting (**Barbosa et al.**, 2008). Whereas, toxoplasmosis is a major opportunistic infection that may lead to morbidity and mortality in immunocompromised individuals (*Lin et al.*, 2000 and Meeka et al., 2001).

Chronic renal failure patients suffer from impairment of cell mediated immunity either due to uremia or due to interventions used in their therapy, including dialysis and transplantation with subsequent immunosuppressive therapy and multiple blood transfusions (*Pesanti*, 2001).

Immuncompromised hosts with T cell defects include AIDS patients, patients with hematological malignancies (especially Hodgkin's disease and other lymphomas), organ transplant recipients, and patients receiving immunosuppressive therapy with corticosteroids and cytotoxic drugs (*Weiss and Dubey*, 2009).

Toxoplasmosis in these patients usually occurs as a consequence of the recrudescence of a latent infection acquired before the onset of immune suppression. However, it may occur also due to recently acquired acute infection with the parasite (Montoya et al., 2001).

Human beings can be infected with *Toxoplasma gondii* (*T. gondii*) by ingestion or handling of undercooked or raw meat (mainly pork and lamb) containing tissue cysts or water or food containing oocysts excreted in the faeces of infected cats or exposure to infected cats (*Cook et al., 2000, Dubey et al., 2002 and Bahia-Oliveira et al., 2003*). Direct human-to-human transmission include transplacental transmission from mother to her fetus (*Reis et al., 2006*). It also include transmission of *T. gondii* by organ

transplantation from a seropositive donor to a seronegative recipient in heart, heart-lung, kidney, liver, and liver pancreas transplantations. Although rare, *T. gondii* can also be transmitted via blood or leucocytes from immunocompetent and immunocompromised donors (*Montoya and Liesenfeld*, 2004).

Toxoplasmosis demonstrates various clinical manifestations. In immunocompetent individuals, toxoplasmosis is generally asymptomatic, however, it sometimes manifests with fever, malaise, headache, myalgia, asymptomatic lymph node enlargement, and chorioretinitis when it locates in the eye (*Montaya et al., 2002*). In immunocompromised patients, *T. gondii* may cause encephalitis, pneumonitis and myocarditis as manifestations of toxoplasmosis. These infections are usually fatal if not recognized and treated (*Weiss and Dubey, 2009*).

Clinical signs are non-specific and insufficiently for a definite diagnosis because toxoplasmosis mimics several other infectious disease (*Remington et al.*, 2001).

Diagnosis of toxoplasmosis in humans is usually made by serological, histological, and molecular methods, or by some combination of the above (*Montoya et al., 2002*). The direct recovery of *Toxoplasma gondii* from biological samples is often impracticable. Consequently, serological diagnosis represents the most widely used approach for defining the stage of infection (*Sensini, 2006*).

In clinical practice, serological tests are routinely employed to detect immunoglobulin M (IgM) and immunoglobulin G (IgG) specific antibodies, including indirect immunofluorescence and immunoenzymatic tests (enzyme – linked immunosorbent assay (ELISA), with the latter showing higher sensitivity and specificity (*Remington et al., 2004*).

Aim of work:

Study prevalence of seropositivity for anti-Toxoplasma antibodies (IgG and IgM)
in patients with chronic renal failure and renal allograft recipient using enzyme –
linked immunosorbent assay (ELISA) technique.