Current Status of the Implication of the Clinical Practice Pattern in Hemodialysis Prescription in Regular Hemodialysis Patients in Egypt (North Sohag)

Protocol of Thesis

Submitted for partial fulfillment of Master of Science in kidney Disease

By

Eman Mofdy Karmy

(M.B.B.,CH.,) Assuit University

Medical Diplomat (Ain Shams University)

Under Supervision of

Prof. Dr. Yasser Soliman Ahmed

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. Hisham Atef AboEllel

Professor assistant of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

2014

Acknowledgement

First of all, thanks to **Allah** the most merciful.

I wish to express my deepest thanks and respect for **Prof. Dr. Yasser Soliman Ahmed**, Professor of Internal Medicine and nephrology, Faculty of Medicine, Ain Shams University, for his valuable supervision, guidance, understanding and kind advice throughout this work.

Also, I wish to express my deep gratitude to **Prof. Dr.** Hisham Atef Abo Ellel, Professor assistant of Internal Medicine and nephrology, Faculty of Medicine, Ain Shams University, for her considerable support, supervision and help during this work.

I would like also to thank my parents and my husband for their kindness, support and much needed encouragement.

Iman Mofdy

List of Contents

Subjects	Page No.
List of Figures	i
List of Tables	ii
List of Abbreviations	iii
Introduction	1
Aim of the Work	4
REVIEW OF LITERATURE	
Chapter 1: ESRD burden in developi	ng countries
	E
<u>Chapter 2</u> : Hemodialysis associated	
	20
Chapter 3: GUIDELINES FOR KIDNE	
PATIENTS AND METHODS	
IIIIIIII IIII IIIII IIIIIIIIIIIIIIIIII	ту
RESULTS	54
Discussion	85
Summary and conclusion	97
Recommendation	102
References	103
Arabic Summary	123

List of Tables

Tab. No	Subjects	Page No.	
Table (1) :	Gender and age distribution in the study popul	ation 54	
<u>Table (2):</u>	Different causes of ESRD in the study populat	ion57	
<u>Table (3):</u>	Different comorbidities in the study population	ı 57	
<u>Table (4):</u>	Work status in the study population	58	
<u>Table (5:</u>]	Dependency status in the study population	59	
<u>Table (6):</u>	Frequency of HD sessions/week in the study popul	lation60	
<u>Table (7):</u>	Duration of HD session in the study pop	oulation 61	
<u>Table (8):</u>	Sponsoring status in the study population	62	
<u>Table (9):</u>	Type of vascular access in the study population	64	
Table (10)	: Frequency of access failure in the study popu	lation 65	
Table (11)	: The levels of Hemoglobin , MCV, Iron study	during the last	
6 montl	ns covered by the study	66	
Table (12)	: Ferritin levels in the study population	68	
Table (13)	: TSAT category in the study population	69	
Table (14)	: History of blood transfusion in the study popu	lation70	
Table (15)	: Different types of ESA used by the study popular	ılation71	
Table (16)	: History of blood transfusion in the study popu	lation71	
Table (17)	: Different types of ESA used by the study popular	ılation72	
Table (18)	: History of iron injection in the study population	on72	
Table (19)	:History of vitamins use in the study pop	ulation 73	

List of Tables (Cont....)

Tab. No	Subjects	Page No.
<u>Table (20)</u> : The lev	els of Calcium, phosphorus and PTF	H during the last 6
months	covered by the study	74
Table (21): Calciu	m levels in the study population	n76
Table (22): Phosph	orus levels in the study population	77
Table (23): PTH le	vels in the study population	78

LIST OF FIGURES

Figure No.	Title	Page	
Figure (1):	The development of clinical practice	guidelines 36	
Figure (2):	Gender distribution in the study population	on 54	
Figure (3):	Different causes of ESRD in the study pop	ulation 56	
Figure (4):	Different comorbidities in the study popula	ation 57	
Figure (5):	Work status in the study population	58	
Figure (6):	Dependency status in the study population	59	
Figure (7):	Frequency of HD sessions/week in the stud	ly population 60	
Figure (8):	Duration of HD session in the study popula	ation 61	
Figure (9):	Sponsoring status in the study population.	63	
Figure (10):	Type of vascular access in the study popular	ation 64	
Figure (11):	Frequency of access failure in the study po	pulation 65	
Figure (12):	Hemoglobin category in the study populat	ion 67	
Figure (13):	Ferritin levels in the study population	68	
Figure (14):	TSAT Category in the study population	<u>69</u>	
Figure (15):	History of blood transfusion in the study P	opulation 70	
Figure (16):	Different types of ESA used by the study I	population 71	
Figure (17):	History of iron injection in the study popu	lation 72	
Figure (18):	History of vitamins use in the study popula	ation 73	

Figure (19):	Calcium levels in the study population75	
Figure (20):	Phosphorus level in the study population76	
Figure (21):	PTH levels in the study population77	
Figure (22):	Calcium phosphorus product level in the study population	78

LIST OF FIGURES (Cont....)

Figure No.	Title	Page
Figure (23):	Different types of phosphorus binders used	l by the study population
		79
Figure (24):	Types of complications during HD session i	n the study population.
		80
Figure (25):	Viral status in the study population	81
Figure (26):	Type of dialyzer used in the study populat	t ion 82
Figure (27):	Criteria of dialysate used in the study popu	lation 84

LIST OF ABBREVIATIONS

Abbrev.	Full term
AVF	arteriovenous fistula
AVG	arteriovenous graft
BMI	Body mass index
PEM	protein-energy malnutrition
CAPD	continuous ambulatory peritoneal dialysis
CHF	Congestive heart failure
CKD	Chronic kideny disease
CKD5	chronic kidney disease stage 5
CLD	Chronic liver disease
CMS	US Centers for Medicare and Medicaid Services
CPG	clinical practice guidelines
CSN	Canadian Society of Nephrology
CVC	Chronic venous cathter
CVD	Cardiovascular disease
DM	Diabetus mellitus
DOPPS	Dialysis outcome and practice pattern study

ERA-EDTA the European Renal Association-European Dialysis

ERT and Transplantation association

the Evidence Review Teams

ESRD End stage renal disease

GBD Global Burden of Disease
GFR Glomerular filtration rate

GraDe Grades of recommendation assessment, Development,

and evaluation

Hb Hemoglobin

HBV Hepatitis B VirusHCV Hepatitis C Virus

HIV Human immunodeficiency virus

HD HemodialysisHTN HypertensionHR Hazard ratioIV Intravenous

K/DOQI Kidney Disease Outcome Quality Initiative **KDIGO** Kidney disease improving global outcomes

KHA-CARI The Kidney Health Australia-Caring for Australasian

with Renal Impairment

MBD Mineral and bone disorder

MIA Malnutrition -Inflammation atherosclerosis (MIA)

Syndrome

MICS 'malnutrition—inflammation complex syndrome'

MOH Ministry of health

NCDs Noncommunicable diseasesNKF National Kidney FoundationPEM Protein energy malnutrition

pmp Per million populationPTH parathyroid hormone

PVD Periferal vascular disease

RA The UK Renal Association

RCTs Randomized clinical trials

RRT Renal replacement therapy

SPSS Statistical package for special science

VA Vascular access

الوضع الحالى لأشكال الممارسه الاكلينكيه المتبعه لوصفات الاستصفاء الدموى لدى مرضى الاستصفاء الدموى في مصر (شمال سوهاج)

رسالة توطئة للحصول على درجة الماجستير في أمراض الكلي

مقدمة من

د/ ایمان مفدی کرمی جید

بكالريوس الطب والجراحة

دبلوم أمراض الباطنة - جامعة عين شمس

تحت إشراف ياسر سليمان أحمد

أ.د/

مه رسط الباطنة والكلى كلية الطب - جامعة عين شمس

د./ هشام عاطف ابوالليل

مدرس أمراض الباطنة و الكلى كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس 2012

INTRODUCTION

hronic kidney disease (CKD) is a worldwide public health problem. According to the World Health Report 2002 and Global Burden of Disease (GBD) project, diseases of the kidney and urinary tract contribute to the global burden of diseases, with approximately 850,000 deaths every year and 15,010,167 disability-adjusted life years.

(http://www3.who.int/whosis/menu.cfm?path=evidence,burde n&language=english.) They are the 12th cause of death and the 17th cause of disability, respectively. The global incidence and prevalence of CKD, however, may be underestimated by these data for a number of reasons.

Studies examining the link between research evidence and clinical practice have consistently shown gaps between the evidence and current practice. Some studies in the United States suggest that 30%-40% of patients do not receive evidence-based care, while in 20% of patients care may be not needed or potentially harmful. However, relatively little information exists about how to apply evidence in clinical practice, and data on the effect of evidence-based guidelines on knowledge uptake,

process of care or patient outcomes is limited (*Locatelli et al.*, 2004).

Appropriately then, the care of dialysis patients has been the prime focus of nephrology, particularly after the widespread availability of maintenance dialysis when it became evident that mortality of dialyzed patients was high and their quality of life far from adequate(*Eknoyan et al*, 2002).

Guidelines practiced on anemia and actual practices are much different with different places and patients according to treatment. Moreover, in individual countries and individual units within countries local circumstances relating to economic conditions; organization of health care delivery or even legal constraints may render the immediate implementation of best practice guidelines difficult or impossible. Nevertheless, they provide a goal against which progress can be measured (*Locatelli et al.*, 2004).

Compliance with clinical guidelines is an important indicator of quality and efficacy of patient care, at the same time their adaptation in clinical practice may be initiated by numerous factors including; clinical experts, patient performance, constrains of public health policies, community standard, budgetary limitation and methods of feeding back information concerning current practice (*Cameron*, 1999).

End-stage renal disease (ESRD) is one of the main health problems in Egypt. Currently, hemodialysis represents the main mode for treatment of chronic kidney disease stage 5 (CKD5), previously called ESRD or chronic renal failure (*Afifi*, 1999)

Although hemodialysis is often used for treatment of ESRD, no practice guidelines are available in Egypt. Healthcare facilities are seeking nowadays to develop practice guidelines for the sake of improving healthcare services (*Ministry of Health and Population*, 1999)

AIM OF THE WORK

To study the pattern of current clinical practice in hemodialysis prescription in regular hemodialysis patients in Egypt and to compare this pattern with standard international guidelines in hemodialysis prescription, stressing on anemia, bone disease management and adequacy of dialysis.

ESRD burden in developing countries

One potential outcome of chronic kidney disease (CKD) is end-stage renal disease (ESRD), requiring costly renal replacement therapy in the form of dialysis or transplantation. Although the incidence of ESRD shows signs of leveling off in developed countries, perhaps in part because of increased awareness of CKD, no such trend is seen in developing countries or minority populations. Over 2 million people now require renal replacement therapy to sustain life worldwide, but this likely represents less than 10% of those who need it (*Codreanu*, 2006)

Chronic renal failure is a devastating medical, social, and economic problem for patients and their families. The availability and quality of dialysis programs largely depend on the prevailing economic conditions, the political-social structure, overall health care facilities, and the health care funding strategies of various countries. Large disparities separate the socio-economic structures of various countries, especially the developed and the developing countries. In the developed world, health care is generally available, whereas the vast population of people living in developing countries do not have access to even basic amenities like sanitation and safe drinking water (REPORT, AD: 2000, in The World Bank, 2000, New York, Oxford).