Role of nutrition in rheumatic diseases

An essay submitted in partial fulfilment of master degree in

Physical Medicine, Rheumatology and Rehabilitation.

Introduced by:

Yasmine Mohamed Abd El Nour

M.B., B.Ch. Faculty of Medicine, Ain Shams University.

Under supervision of

Professor Doctor Fatma Kamel Mohammed Abdel Motaal

Professor of Physical Medicine, Rheumatology and Rehabilitation
Faculty of Medicine, Ain Shams University

Professor Doctor Amal Mostafa El Ganzoury

Professor of Physical Medicine, Rheumatology and Rehabilitation
Faculty of Medicine, Ain Shams University

Doctor Rana Ahmed El-Hilaly

Lecturer in Physical Medicine, Rheumatology and Rehabilitation
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University2013

Introduction

Rheumatic disease is a type of disease involving inflammation of muscles, joints, and other tissues.

(Gale Encyclopedia of Medicine, 2008).

Millions of people suffer from rheumatic diseases such as gout, fibromyalgia, osteoarthritis, and rheumatoid arthritis. These can be incapacitating and detrimental to quality of life. Diet, nutrition, and weight loss have shown promise in alleviating some of this disease burden. These lifestyle changes may give patients a feeling of control and ownership over their disease as well as a nonpharmacologic means of treatment. (Li et al., 2010).

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease manifested by swollen and painful joints, bone erosion and functional impairment. The joint lesions are characterised by infiltration of T lymphocytes, macrophages and B lymphocytes into the synovium and by synovial inflammation involving eicosanoids, cytokines and matrix metalloproteinases (Calder., 2008).

Elimination diets may be useful in a subgroup of patients with rheumatoid arthritis, in whom food antigens probably play an important role in the onset and perpetuation of the inflammatory process. In mixed cryoglobulinemia a lowantigen-diet might reduce the amount of macromolecular food antigens which cross the mucosal barrier of the gut and cause either an immune response and/or compete with the immune mononuclear complexes in the phagocytic system. Supplementing the diet with essential fatty acids (omega-3) and/or omega-6) may inhibit the production of some of the mediators of inflammation, such as leukotriene-B4 and interleukin-1.(De Vita et al., 1992).

Fibromyalgia (FM or FMS) is a medical disorder characterized by chronic widespread pain and allodynia, a heightened and painful response to pressure (Wolfe et al.,1990).

Many people suffer from fibromyalgia (FM) without an effective treatment. They do not have a good quality of life and cannot maintain normal daily activity. Among the different hypotheses for its ethiopathophysiology, oxidative stress is one of the possibilities. Vegetarian diets could have some beneficial effects probably due to the increase in antioxidant intake. There is a high prevalence of obesity and overweight in patients, and weight control seems to be an effective tool to improve the symptoms.(**Arranz et al.,2010**).

Gout is a medical condition usually characterized by recurrent attacks of acute inflammatory arthritis—a red, tender, hot, swollen joint. (Eggebeen., 2007).

Sustained hyperuricaemia is a risk factor for acute gouty arthritis, chronic tophaceous gout, renal stones and possibly cardiovascular events and mortality. Before starting lifelong urate-lowering drug therapy, it is important to identify and treat underlying disorders that may be contributing to hyperuricaemia. It is relevant to recognize the association of the insulin resistance syndrome (abdominal obesity, dyslipidaemia, hypertension, raised serum insulin levels and glucose intolerance) with hyperuricaemia.In the obese, controlled weight management has the potential to lower serum urate in a quantitatively similar way to relatively unpalatable "low purine" diets. Non-fat milk and low-fat yogurt have a variety of health benefits and dairy products may have clinically meaningful antihyperuricaemic effects. In addition, fruits, such as cherries and high intakes of vegetable

protein diet may reduce serum urate levels. (Schlesinger ., 2005).

It is prudent to advise patients to consume meat, seafood and alcoholic beverages in moderation, with special attention to food portion size and content of non-complex carbohydrates which are essential for weight loss and improved insulin sensitivity. (Lee., 2006).

Osteoporosis is a disease affecting many millions of people around the world. It is characterized by low bone mass and micro-architectural deterioration of bone tissue, leading to bone fragility and a consequent increase in risk of fracture. (**Prentice.**, 1997).

Calcium is one of the main bone-forming minerals and an appropriate supply to bone is essential at all stages of life. There has been considerable debate about whether current recommended intakes are adequate to maximize peak bone mass and to minimize bone loss and fracture risk in later life, and the controversies continue.

Vitamin D is obtained either from the diet or by synthesis in the skin under the action of sunlight. Many other nutrients and dietary factors may be important for long-term bone health and the prevention of osteoporosis. Among the essential nutrients zinc, copper,manganese, boron, vitamin A, vitamin C, vitamin K, the B vitamins,potassium and sodium . (Department of Health. Nutrition and bone health.. 1998).

Osteoarthritis (OA) also known as degenerative <u>arthritis</u> or degenerative joint disease or osteoarthrosis, is a group of mechanical abnormalities involving degradation of <u>joints</u>, including articular cartilage and subchondral bone.

(MedlinePlus Encyclopedia).

The strongest risk factor for OA, particularly of the knee,is overweight and obesity. Initial weight loss studies for the treatment of OA have shown promising results, The ratio of dietary omega-6 to omega-3 fatty acids has been proposed to be related to OA because they are precursors of proinflammatory and anti-inflammatory eicosanoids and cytokines, respectively. However, human data are lacking to substantiate this relationship. Low serum levels of some vitamins, such as C and D, have been associated with OA in epidemiological research, but much more work must be conducted to understand the roles of these and other vitamins in OA prevention and treatment. (**Kathleen., 2007**)

Systemic lupus erythematosus SLE is a systemic autoimmune disease (or autoimmune connective tissue disease) that can affect any part of the body. It is a Type III hypersensitivity reaction caused by antibody-immune complex formation. (James et al., 2005).

Dietary nutrients may modify clinical course of disease in female patients with SLE. Vitamin C intake is inversely associated with the risk of active disease, suggesting that vitamin C intake may prevent the occurrence of active SLE disease (Minami et al., 2003). Higher intake of vitamin B6, B12, folate and dietary fiber may prevent the occurrence of active disease in SLE (Minami et al., 2011).

The goals of dietary therapy in rheumatic diseases are alleviation of underand malnutrition, inhibition of inflammation, prophylaxis of osteoporosis, as and treatment of nutrient recognition sensitivities or intolerances. Inflammation inhibition in these patients is improved by manipulating the omega-3/omega-6 fatty acids ratio in the diet. Reduction of dietary arachidonic acid is recommended. This polyunsaturated fatty acid is the main precursor of pro-inflammatory mediators which interact with chemokines and cytokines . (Adam., 2009).

List of contents

List of abbreviations List of figures Aim of the work

DI		4	• 1		41	• 4 •	•
Кn	eun	าภา	oio	ΙA	rth	rifi	S

Introduction		1
Pathophysiology		2
Nutrition and rheumatoic	d arthritis	
1 or juinsulatura	and	
fattyacids		3
Nutritional status		
Nutritional intervention	n	
		11
-Vegetarian diet		13
		15
-Elemental diet .		19
Nutritional supplemen	itation	
- Fatty acids		20
- Antioxidants		28
- Folate and B vi	itamins	32
-Zinc and Iron		33
-Ca and vitamin	D	35

Osteoarthritis

Introduction38
Pathophysiology39
Nutrition and osteoarthritis
Nutritional status
-Body weight, joint load and limb malalignment 42
Nutritional intervention44
Nutritional supplementation
-Antioxidants46
- Avocado and Soybean Unsaponifiables54
-Fish oil55
-S-adenosylmethionine56
- Methylsulfonylmethane57
Systemic lupus
Introduction
Pathophysiology59
Nutrition and systemic lupus
Nutritional status60
Nutritional intervention and Supplementation63
-Caloric restriction64
-Low protein diets66
-Lipids67
-Vitamin D69

-Vitamin A	73
-Vitamin C	74
-Vitamin E	76
-Fibers	77
-B complex	79
-Minerals	
Zn	80
Selenium	81
Calcium	81
Soduim	82
Copper	83
Iorn	83
- Dihydroepiandrosterone	84
Gout	
Introduction	88
Pathophysiology	89
Nutrition and Gout	
Nutritional status	
-Metabolic syndrome and hyperurace	emia91
-obesity	94
Nutritional intervention	
-Purine rich foods	96
-Vegetables, fruits and dairy	101

-Fructose	103			
-Coffe and tea	104			
-Alcohol	106			
Nutritional supplementation	107			
Osteoporosis				
Introduction	110			
Pathophysiology	111			
Nutrition and Osteoporosis				
-Biological roles of minerals and vitamins	112			
-Dietary protein, fat and bone metabolism	121			
Fibromyalgia				
Introduction	128			
Pathophysiology	129			
Nutrition and Fibromyalgia				
Nutritional status	136			
Nutritional intervention	142			
-Vegetarian dietElimination diet	148			
Nutritional supplementation	153			
SummaryRecommendationsReferences	161			
Arabic summary				

Abbreviation list

AA Arachidonic acid

ANAS antinuclear antibodies

ALA Alpha-linolenic acid

ACR American College of

Rheumatology

ACTH Adrenocorticotropic hormone

Anti LPL anti-lipoprotein lipase antibodies

ASU Avocado and Soybean

Unsaponifiables

BOKS Boston Osteoartheritis Of the

Knee study

BCCA Branched chain amino acids

BDI Beck Depression Inventory

BSQ Body Shape Questionnaire

BMI Body Mass Index

BMD Bone Mineral density

BILAG British Isles Lupus Assessment

Group

CMC Carpometacarpal

CI Confidence interval

CSF Cerebspinal fluid

CRP C-reactive protein

DHA Docosahexaenoic acid

DHEA Dehydroepiandrosterone

DGLA dihomo- -linolenic acid

DAS28 Disease Activity Score 28

DRIA Dynamometric Challenge test

DIP Distal interphalangeal

DMODS Disease-modifying osteoarthritis

drugs

DS diatery supplements

dsDNA double-stranded DNA

EPA Eicosapentaenoic acid

ETA Eicosatrienoic acid

ESR Erythrocyte sedimentation rate

ESCEO European Society for Clinical

and Economic Aspects of

Osteoporosis and Osteoarthritis

FFQ Food Frequency Questionnaire

FMS Fibromyalgia syndrome

FIQ FM Impact Questionnaire

GLA -linolenic acid

GAG Glycosaminoglycan

GAIT Glucosamine/chondroitin

Arthritis Intervention Trial

GH Growth hormone

GPX Glutathione peroxidase

HAQ Health Assessment Questionnaire

HPFS Health Professionals Study

HDL-C High-density lipoprotein

cholesterol

5HT 5-hydroxytryptamine

HPA Hypothalamic-pituitary-adrenal

IOF International Osteoporosis

Foundation

IOM Institute of Medicine

IGF I insulin-like growth factor I

IDA Iron deficiency anaemia

IL-2 Interleukin-2

IFN- Interferon-

IL-1 Interleukin-1

JSN Joint-space narrowing

LTB4 4-series leukotrienes

LPS lipopolysaccharide

LED Low energy Diet

LDL Low-density lipoproteins

LA linoleic acid

MUFAS Mono-un saturated fatty acids

MTX Methotrexate

MMP Matrix metalloproteinases

MSM Methylsulfonylmethane

MSG Monosodium glutamate

MPI-I Multidisciplinary Pain Inventory

- interference

MS Metabolic syndrome

NO nitric oxide

NOF National Osteoporosis

Foundation

NHNANES III Third National Health and

Nutrition Examination Survey

NZB/NZW (BW) F1 New Zealand Black/White

OA Osteoarthritis

ONNO- peroxinitrite

OPG Osteoprotegerin

O2- Superoxide radical

OE Oxidative stress

PDGF platelet-derived growth factor

PUFAS Polyunsaturated fatty acids

PGE2 Prostaglandins E2

PIP proximal interphalangeal

PTH parathormone

QOL Quality of Life

RA Rheumatoid Arthritis

RF Rheumatoid factor

RDA Recommended Daily Allowances

RNI Recommended Nutrient intakes

RCT Randomized controlled study

ROS Reactive oxygen species

RANK/L Receptor Activator for Nuclear

Factor /Ligand

RR Relative Risk

RMR Resting Metabolic Rate

SAH Subarachnoid hemorrhage