THE ROLE OF CIRCULATING CD4+CD25HIGH REGULATORY T CELLS IN CHRONIC HEPATITIS B VIRUS INFECTION

Thesis

Fatma AbdEllah AbdUllah

M.B., B.CH., Ain Shams University

Supervised By

Professor / Shahira Fathy EL-Fedawy

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Professor / Afaf Abd EL-Alim Mostafa

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Doctor / Dina El-Sayed El-Shennawy

Lecturer of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University

2011

دور الخلايا تي التنظيمية (سي دي4, سي دي ...) في الائتهاب الكبدى الفيروسي (ب) المزمن.

رسالة مقدمة توطئة للحصول على درجة الماجستير في الباثولوجيا الإكلينيكية و الكيميائية

مقدمة من الطبيبة / فاطمة عبداللاه عبدالله بكالوريوس الطب و الجراحة كلية الطب - جامعة عين شمس

تحت اشراف الائستاذ الدكتور / شهيره فتحى الفداوى أستاذ الباثولوجيا الإكلينيكية و الكيميائية كلية الطب - جامعة عين شمس

الاستاذ الدكتور /عفاف عبدالعليم مصطفى

أستاذ الباثولوجيا الإكلينيكية و الكيميائية كلية الطب - جامعة عين شمس الدكتور / دينا السيد الشناوى

مدرس الباثولوجيا الإكلينيكية و الكيميائية كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس 2011

SUMMARY

There are more than 2 billion individuals with serological evidence of HBV infection worldwide. Of these 400 million are chronic carriers and 500,000 to 1.2 million die annually from cirrhosis and HCC. HBV infection has serious consequence such as chronic hepatitis, cirrhosis and HCC that ultimately causes death of infected persons.

Many studies have confirmed that the pathogenesis of HBV is largely due to the host immune system particularly the cellular immune response.

Regulatory T cells represent about (5-10%) of CD4 T cells known as suppressor T cells. Their major role is to shut down T cell —mediated immunity toward the end of an immune reaction and to suppress auto-reactive T cells. Two major classes of CD4 regulatory T cells have been described, naturally occurring T regulatory cells and adaptive T regulatory cells.

Regulatory T cells, are crucial for the maintenance of immunological tolerance.

There is increasing evidence that CD4⁺CD25⁺ T Reg contribute to the immunological hyporesponsiveness against several pathogens including HBV, resulting in chronic infection.

Thanks are given to ALLAH the source of all knowledge for blessing this work till it has come to an end. I would like to express my deepest thanks to Prof. Dr. Shahira Fathy EL-Fedawy, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her kind support guidance and valuable remarks. I am profoundly grateful for her continuous close supervision and constant help.

I would also like to express my deepest thanks and gratitude to Prof. Dr. Afaf Abd EL-Alim Mostafa, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University for her generous help, continuous encouragement and stimulating remarks throughout the study.

I would also like to express my great gratitude to Dr. Dina El-Sayed El-Shennawy, Lecturer of Clinical Tathology, Faculty of Medicine, Ain Shams University for her valuable comments, knowledge, experience and hand necessary for achieving this work.

Last but not least, I would like to thank my family especially my parents and my husband who encouraged and supported me all the time, to them I dedicate this work.

LIST OF CONTENTS

Title	Page No.
Introduction	1
Aim of the work	3
Review of Literature	
• Chapter I: Hepatitis B virus infection	4
Chapter II: T regulatory cell	55
Chapter III: T reg cell and clinical condition	73
Subjects and methods	99
Results	104
Discussion	119
Summary	128
Conclusion	131
Recommendation	132
References	133
Arabic Summary	

LIST OF TABLES

Tab. No.	Title	Page No.
Table (1):	Stages of chronic HBV infection	41
Table (2):	Advantages and disadvantages of HBV DNA testing	45
Table (3):	The following table summarizes the various hepatitis B tests and their uses	49
Table (4):	Comparison between cases and control regarding the sex:	105
Table (5):	Comparison between cases and control regarding the age:	106
Table (6):	Comparison between cases and control regarding liver enzymes ALT and AST) levels:	106
Table (7):	Comparison of the frequency of T Reg cells between cases and control:	110
Table (8):	The correlation between AST, ALT levels and the frequency of T Reg cells among cases:	111
Table (9):	Regression study between the variables age, sex, ALT and AST levels with the constant Treg cells frequency among the patients group:	113
Table (10):	Comparison between replicating CHB group and non replicating group, as regard ALT levels.	114
Table (11):	Comparison between the replicating CHB group and the non replicating group, as regard the degree of viremia.	115
Table (12):	Comparison between the replicating CHB group and non replicating group, as regard the frequency of T reg cells	116

LIST OF TABLES (Cont...)

Tab. No.	Title	Page No.
Table (13):	Comparison between CHB patients with mild viremia and with moderate to sever viremia regarding the frequency of T reg	116
Table (14):	The correlation between the level of viremia and the frequency of T reg cells among cases.	
Table (15):	Comparison between CHB patients on treatment versus those who are not regarding the frequency of T reg cells	118
Table (16):	Comparison of the frequency of T reg cells in CHB patients with different treatment duration.	118

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure (1):	A simplified drawing and electron micrograph of the HBV particle and surface antigen	5
Figure (2):	Representation of hepatitis B virus (HBV) genome.	6
Figure (3):	Domains of HBV surface proteins	7
Figure (4):	The Replication cycle of HBV	10
Figure (5):	The cytokine/chemokine cascade through which NK cells recruit T cells: a) hepatocytes produce type 1 interferon (IFN- α/β) in response to HBV infection	
Figure (6):	Immunoregulatory functions of hepatic natural killer T (NKT) cells	24
Figure (7):	DCs are the most potent APCs	28
Figure (8):	Cellular immune responses to HBV	31
Figure (9):	Schematic figure of how the B7-H1/ PD-1 pathway may mediate the exhaustion of virus-specific T cells in chronic HBV infection	37
Figure (10):	HBV-specific T-cell tolerance causes	38
Figure (11):	Gender distribution in cases and control	105
Figure (12):	BLOX BLOT diagram comparing ALT levels between cases and control.	107
Figure (13):	BLOX BLOT diagram comparing the AST levels between cases and control	107
Figure (14):	A flow histogram of normal subject (control)	108
Figure (15):	A flow histogram of CHB patient	108

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
Figure (16):	A histogram showing the distribution of the frequency of T reg cells by the flowcytometry in the control group	109
Figure (17):	A histogram showing the distribution of the case group describing the frequency of T reg cells by the flowcytometry.	110
Figure (18):	Correlation between the AST level and frequency of T reg cells among patient group	112
Figure (19):	Correlation between the ALT level and the frequency of T reg cells among the patient group.	112
Figure (20):	Correlation between ALT and AST levels among the patient group.	113

LIST OF ABBREVIATIONS

ALT Alanine aminotransferase	
ALT Alanine aminotransferase	
Anti-HBc Anti hepatitis B core antibody	
Anti-HBs Anti hepatitis B surface antibody	
A nucleotide Adenine nucleotide	
APC Antigen presenting cell	
CD Cluster of Differentiation	
cccDNA covalently closed circular DNA	
CTL Cytotoxic T lymphocyte	
CTLA-4 Cytotoxic T-lymphocyte associated antigen-4	
DC cell Dendritic cell	
DR Direct repeats	
ER Endoplasmic reticulum	
FasL Fas Ligand	
FoxP3 Forkhead/winged helix transcription factor on T _{res}	cells
HBcAg Hepatitis B core antigen	
HBeAg Hepatitis B envelope antigen	
HBsAg Hepatitis B surface antigen	
HBV Hepatitis B virus	
HCC Hepatocellular carcinoma	
HCV Hepatitis C virus	
HIV Human immune deficiency virus	
HSPGs Heparan sulphate proteoglycanes	
IFN Interferon	
IFN- α/β Interferon alpha/beta	

LIST OF ABBREVIATIONS (Cont...)

Abbrev.	Full term
IFN-γ	Interferon gamma
IL-2	Interleukin-2
IL-2R	Interleukin-2 receptor
IPEX	Immune dysregulation, polyendocrinopathy, enteropathy X-linked syndrome
LGL	Large granular lymphocyte
LN	Lymph node
mDC cell	Myeloid dendritic cell
moDC cell	Monocyte derived dendritic cell
mRNA	messenger RNA
NK cell	Natural killer cell
NKT cell	Natural killer T cell
NS2 protein	Non-structural 2 protein
PAMPs	Pathogen associated molecular pattern
PCR	Polymerase chain reaction
pDC cell	Plasmacytoid dendritic cell
PD-1	Programmed death-1
PD-L1	Programmed death ligand-1
PEG-IFN	Pegylated interferon
P gene	Polymerase gene
PRR	Pattern recognition receptor
TCR	T cell receptor
TGF- ß	Transforming growth factor-ß
TNF- α	Tumour growth factor- α
T nucleotide	Thymine nucleotide
Th1 cell	T helper-1 cell
Th2 cell	T helper-2 cell
Treg cells	Regulatory T cells

INTRODUCTION

Hepatitis B virus (HBV) infection is a major threat worldwide with a particularly high prevalence in Asia & Africa, approximately 400 million people suffer from chronic hepatitis B infection. This includes 350 million chronic carriers of the virus (*Xue-Ping et al.*, 2010).

Transmission of hepatitis B virus results from exposure to infectious blood or body fluids. The acute illness causes liver inflammation, vomiting, jaundice and rarely death. Chronic hepatitis B may eventually cause liver cirrhosis and liver cancer, a fatal disease with very poor response to current chemotherapy. The infection is preventable by vaccination (*Barker et al.*, 1996).

Many studies have confirmed that the pathogeneses of HBV is largely due to the host immune system particularly the cellular immune response (*Xue-Ping et al.*, 2010).

Regulatory T cells represent about (5-10%) of CD4 T cells in human, formerly known as suppressor T cells. Their major role is to shut down T cell –mediated immunity toward the end of an immune reaction and to suppress auto-reactive T cells that escaped the process of negative selection in the thymus (*William et al.*, 2004).

Introduction

Two major classes of CD4 regulatory T cells have been described naturally occurring T regulatory cells (CD4,CD25 T regulatory cells) arise in the thymus and adaptive T regulatory cells (Th3cells) may originate during a normal immune response (*Barton et al.*, 2000).

It is suggested that increase frequency of CD4(+) CD25(high) T regs may inhibit the cellular immune response against HBV and affect viral clearance, leading to the persistence of chronic HBV infection (*Schwarz and Bhandoola*, 2006).

AIM OF THE WORK

The aim of this study is to analyze the frequency of circulating CD4(+) CD25(+)^{high} T regulatory cells in patients with chronic hepatitis B and assess its role in virus persistence.