The Prognostic Value of Serum Procalcitonin Monitoring in Febrile Neutropenic Patients with Hematological Malignancies

Thesis

Submitted for Partial Fulfillment of Master Degree in Medical Microbiology and Immunology

by

Caroline Maged Abd Elmessih Hezkial

M.B., B.Ch, Ain Shams University

Under Supervision of

Prof. Dr. Taghreed Hamed Taha Elkhashab

Professor of Medical Microbiology and Immunology Faculty of Medicine Ain Shams University

Dr. Safaa Mohamed Abdel-Rahman Khattab

Lecturer of Medical Microbiology and Immunology Faculty of Medicine Ain Shams University

Dr. Walaa Ali Al Salakawy

Lecturer of Internal Medicine and Clinical Haematology Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2014

«Acknowledgment»

First of all I'd like to thank God for everything that has ever been accomplished in my life and for His ongoing support that never stops

It was a great honor working under the supervision of **Prof. Dr. Taghreed Hamed Taha Elkhashab**, Professor of Medical Microbiology and Immunology Faculty of Medicine, Ain Shams University, and I'd like to thank her for her continuous support throughout the course of this study and for her great patience, help and guidance to complete this study.

I can't thank enough my dear **Dr. Safaa Mohamed Abdel-Rahman Khattab**, Lecturer of Medical Microbiology and Immunology Faculty of Medicine, Ain Shams University, for her extreme help, encouragement and love for she has shown me the greatest support at all times especially the hardest during this study. thank you.

I wish to express my appreciation to **Dr. Walaa Ali Al-Salakawy**, Lecturer of Internal Medicine and Clinical Haematology Faculty of Medicine, Ain Shams University for her assistance and guidance.

I'd like to thank **Dr. Nagwa Mahmoud Abo El Magd**, for her support and help for me since the very beginning of this study.

I'd also like to express my greatest thanks to all staff member in the department of Microbiology and Immunology, for their cooperation and advice.

Finally I'd like to thank my dear family who have supported me unconditionally all my life and never ceased to encourage and urge me to continue on working through all times until this work has been accomplished.

List of Contents

Title Page					
•	List o	f Abbreviations II			
•	List o	f TablesV			
•	List o	f FiguresVI			
•	Introduction1				
•	Aim o	of the Work3			
•	Review of Literature:				
	0 H	ematological malignancies and infection4			
	-	Infections in patients with hematological malignancies6			
	-	Spectrum of microbial pathogens in hematological malignancies10			
	-	Diagnosis of infections in hematological malignancies21			
	-	Management of infection in hematological malignancies24			
	o Pr	ocalcitonin as a diagnostic marker28			
	-	Procalcitonin synthesis and biochemistry28			
	-	Role of PCT in the inflammatory response31			
	-	Role of PCT in sepsis diagnosis32			
	-	Role of PCT in infection prognosis34			
•	Patie	nts and Methods 38			
•	Resul	lts			
•	Discussion				
•	Summary and Conclusion				
•		mmendation79			
•	References80				
•	Arabi	ic Summary			

List of Abbreviations

	AGR	Accessory Gene Regulator
	AML	Acute Meyloid Leukemia
	ANC	Absolute Neutrophil Count
A	APACHE II	Acute Physiology And Chronic Health Evaluation II
	ARDS	Acute Respiratory Distress Syndrome
	ASCO	American Society Of Clinical Oncology
	AUC	Area Under Curve
В	BSI	Blood Stream Infections
	CAP	Community-Acquired Pneumonia
	CI	Confidence Interval
	CLL	Chronic Lymphocytic Leukemia
	CMV	Cytomegalovirus
C	CoNS	Coagulase Negative Staphylococci
	CRE	Carbapenem Resistant Enterobacteriaceae
	CRP	C-Reactive Protien
	CSF	Colony Stimulating Factor
	CT	Calcitonin
E	ESBL	Extended Spectrum B-Lactamase
E	ESMO	European Society For Medical Oncology
	FACS	Fluorescence Activated Cell Sorting
F	FDA	Food And Drug Administration
ľ	FN	Febrile Neutropenia
	FUO	Fever Of Unknown Origin
	НСС	Hepatocellular Cancer
н	HCV	Hepatitis C Virus
11	HL	Hodjkin Lymphoma
	HSV	Herpes Simplex Viruses

	ICHS	Immunocompromised Host Society
	ICU	Intensive Care Unit
_	IDSA	Infectious Disease Society Of America
Ι	IFIs	Invasive Fungal Infections
	IL-6	Interleukin -6
	IQR	Inter Quartile Range
T/	kDa	Kilo D alton
K	KPC	Klebsiella Pneumoniae Carbapenemase
L	LRTI	Lower Respiratory Tract Infection
	MDR	Multi Drug Resistant
M	MIC	Minimal Inhibitory Concentration
	MRSA	Methicillin Resistant Staphylococcus aureus
N	NCCN	National Comprehensive Cancer Network
11	NHL	Non Hodjkin Lymphoma
	PAM	Peptidylglycine Alpha-Amidating Monooxygenase
P	PCT	Procalcitonin
•	PRORATA	Procalcitonin To Reduce Antibiotic Treatment In Acutely Ill Patients"
	SAPS II	Simplified Acute Physiology Score II
C	SCT	Stem Cell Transplantation
S	SIRS	Systemic Inflammatory Response Syndrome
	SROC	Summary Receiver Operating Curve
Т	TNF-α	TUMOR NECROSIS FACTOR - α
1	TRACE	Time Resolved Amplified Cryptate Emission
	VGS	Viridans Group Streptococci
V	VRE	Vancomycin Resistant Enterococcus
	VZV	Varicella-Zoster Virus
W	WBC	White Blood Cells

* List of Tables*

No.	Title	Page
1	Types of haematological malignancies among patients	49
2	Results of blood culture in enrolled patients	50
3	Percentage of Gram +ve and Gram –ve bacterial isolates from positive blood cultures	51
4	Distribution of individual bacterial blood culture isolates	52
5	Correlation between serum Procalcitonin level and grade of fever	53
6	Correlation between serum CRP level and grade of fever	54
7	Relation between Procalcitonin level and blood culture	55
8	Relation between CRP level and blood culture	56
9	Relation between serum Procalcitonin level and mortality	57
10	Relation between CRP level and mortality	58
11	Interpretation of the ROC curve of day 0	59
12	Different cut-off values of serum Procalcitonin on day 0	60
13	Different cut-off values of serum CRP on day 0	61
14	Interpretation of the ROC curve of day 3	62
15	Different cut-off values of serum Procalcitonin on day 3	63
16	Different cut-off values of serum CRP on day 3	64
17	Interpretation of the ROC curve of day 5	65
18	Different cut-off values of serum Procalcitonin on day 5	66
19	Different cut-off values of serum CRP on day 5	67

* List of Figures*

No.	Title	Page
1	Structure of Procalcitonin molecule	28
2	Guide to Interpreting PCT Levels in ICU Patients	36
3	Preparation of standard solution serial dilution for PCT measurement	42
4	Standard curve used for calculation of serum Procalcitonin	44
5	Standard curve used for calculation of serum CRP	47
6	Types of haematological malignancies among patients and their percentage	49
7	Diagrammatic presentation of blood culture results	50
8	Distribution of Gram +ve and Gram –ve bacterial isolates from positive blood cultures	51
9	The percentage of different bacterial isolates from positive blood culture	52
10	the median level of serum Procalcitonin in patients with negative blood culture and positive blood culture	54
11	the mean level of serum CRP in patients with negative blood culture and positive blood culture	56
12	the median level of serum procalcitonin in patients who died and surviving patients on day 0 and day 3	57
13	the mean level of serum procalcitonin in patients who died and surviving patients on day 0 and day 3	58
14	Comparison between value of measured serum procalcitonin level and serum CRP level in predicting bacterial infection in day 0	59
15	Comparison between value of measured serum procalcitonin level and serum CRP level in predicting bacterial infection in day 3	62
16	Comparison between value of measured serum procalcitonin level and serum CRP level in predicting bacterial infection in day 5	65

INTRODUCTION

Patients affected by hematological malignancies may present sporadic or persistent fever, especially during chemotherapy treatment (well known for its immunosuppressive induced status) or in the later stages of the disease. Moreover, these patients are potential candidates for the development of severe infections. Fever in such patients is extremely common and can have various causes that are not always easy to recognize (*Macchioni et al.*, 2013).

The need of quick, sensitive and reliable tests are fundamental to the diagnosis of infections in patients with hematological malignancies. Unfortunately, routinely available laboratory tests (with a quick turn-around-time, high sensitivity and specificity) to aid in the differential diagnosis, are lacking (Magrini et al., 2013).

C reactive protein (CRP) is often considered a rather non-specific marker of the acute phase inflammatory response rather than infection in particular, and even scoring systems which are used as complementary tools to determine risk of infection (eg: APACHE II, SAPS II) are usually non-specific (*Chen and Li*, 2009).

Procalcitonin (PCT) is a protein precursor of calcitonin, and its concentration appears to be correlated with the severity of infection. The usefulness of PCT as diagnostic and prognostic marker has been reviewed in some meta-analyses, but the results are still somewhat controversial (*Tang et al.*, 2007).

Introduction

Although some data have been published on the use of PCT in detecting infectious diseases in hematological malignancies patients, there is relatively little information regarding the diagnosis of sepsis and serial PCT measurements to follow the course of infection in those patients (*Georgopoulou et al.*, 2011).

AIM OF THE STUDY

The aim of this study is to:

- Identify bacterial pathogens causing fever in febrile neutropenic patients with hematological malignancies.
- Monitor serum PCT levels in those patients.
- Correlate between serum Procalcitonin levels and clinical prognosis in those patients in comparison to serum CRP levels.
- Compare sensitivity and specificity of PCT in detection of bacterial infections with CRP.

AIM OF THE STUDY

The aim of this study is to:

- Identify bacterial pathogens causing fever in febrile neutropenic patients with hematological malignancies.
- Monitor serum PCT levels in those patients.
- Correlate between serum Procalcitonin levels and clinical prognosis in those patients in comparison to serum CRP levels.
- Compare sensitivity and specificity of PCT in detection of bacterial infections with CRP.

Hematological Malignancies and Infections

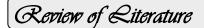
Hematological malignancies are neoplasms originating in the bone marrow and lymph nodes. The aetiology of most hematological malignancies is not yet known, among the factors increasing the risk of hematologial malignancies are: Ionising radiation, exposure to chemicals and dusts, industrial exposures including benzene, viral infections and genetic predisposition (*Nørgaard*, 2005).

Over the past 100 years, several classifications have been devised attempting to provide clinically and biologically relevant subdivisions of hematological malignancies. Hematologic malignancies are broadly divided into: myeloid neoplasms, lymphoid and lymphomas), lymphoproliferative (leukemias disorders and histiocytic/dendritic cell neoplasms. (They are widely recognized as arising out of specific stages of myeloid or lymphoid development or specific subsets of these types of cells). Immunophenotyping and gene expression profiling studies have been useful tools in distinguishing each type from the others (Swerdlow et al., 2008).

Hematological malignancies in Egypt

Among developing countries, the incidence of Hamatological malignancies is low with Egypt being one of the exceptions. Egypt has one of the highest incidence rates of lymphoma in the world, mainly non Hodgkin lymphoma (NHL), which is higher than even the United States as well as other developed nations where hematological malignancies are more common (*Curado et al.*, 2007).

In Egypt, NHL is the second most common cancer in adults (with cancer breast being the first). A number of studies have been carried out in Egypt, but they mostly contain data from pathology-based laboratories or localized registries from predominantly urban areas. In one of the largest and population-based studies on hematological malignancies in Egypt that was


Review of Literature

conducted in Gharbiah governerate, it was observed that a higher urban than rural incidence of hematological malignancies occurred. NHL was the most common type of hematological malignancy with diffuse B-cell neoplasms being the most common type of NHL. Chronic lymphocytic leukemia (CLL) was the most common subtype of leukemia (*Herzog et al.*,2012).

Prevalence of hepatitis C virus (HCV) infection is about 13.9% of the healthy population with higher rates of up to 15.8% in Northern Egypt, such a high rate of HCV infection is related to the increasing incidence of hepatocellular cancer (HCC) in Egypt while at the same time is also probably responsible for the high rates of NHL, especially B-cell type NHL, the role of HCV infection in NHL is further strengthened by immunohistochemical studies that detected HCV RNA in malignant NHL tissues from Egypt (Goldman et al., 2009; Lehman and Wilson, 2009; Gouda et al., 2010).

HCV has been attributed as a causal factor in NHL by Some epidemiological studies observing a two to four times higher risk of NHL occurrence among HCV-positive individuals (*IARC*, 2009).

The association of HCV infection and NHL is clear in Egypt since the pattern of incidence of lymphomas is quite similar to the pattern of incidence of HCC (which can be considered a proxy for HCV infection) in the districts of Gharbiah governerate. In contrast to Gharbiah, cancer incidence in Aswan in South Egypt showed a significantly lower rate of NHL than the rate reported from Gharbiah. However, the rates of Hodjkin lymphoma (HL) and leukemia in Aswan were not significantly different from the rates in Gharbiah. Higher rates of NHL in Gharbiah than South Egypt and other neighboring countries are likely due to the higher infection rate of HCV in Gharbiah than in South Egypt (Mazzaro et al., 2005 and Egypt National Cancer Registry, 2010).

<u>Infections In Patients With Hematological Malignancies</u>

Patients with hematological malignancies are immunocompromised as a result of the underlying malignancy or due to the therapeutic interventions employed to manage it. Some malignancies are associated with specific immune defects that predispose to infections with particular pathogens. Patients with acute leukemia have increased risk of severe Gram-negative bacterial infections as a result of quantitative or functional neutropenia. Patients with CLL and multiple myeloma are susceptible to invasive bacterial infections from Staphylococci Streptococci especially encapsulated Streptococcus pneumoniae due to the altered humoral immunity. Conversely patients with lymphoma have abnormalities of the cellular immune system resulting in an increased risk of viral infections (e.g. herpes simplex) and fungal infections (e.g. Cryptococcus species) (Sharma and Lokeshwar, 2005).

Therapeutic interventions such as corticosteroids, chemotherapy, stem cell transplant, and radiation also produce deficiencies in the host defense. Neutropenia, resulting from cytotoxic chemotherapy is the most common risk factor for severe bacterial infections in hematological malignancies. Similarly common procedures such as venepunctures, bone marrow aspiration and insertion of central venous access devices, disrupt the integument and provide a nidus for colonization (*Rókusz and László*, 2005).

Mucositis, which is characterized by development of inflammatory or ulcerative lesions in the oral or gastrointestinal tract is a common toxicity of cytotoxic chemotherapy and renders the patient vulnerable to infection by different bacteria that reside in the gastrointestinal tract (*Martinez et al.*,2014).

The degree of neutropenia either as a consequence of disease or therapy is directly proportional with the incidence of

Review of Literature

serious bacterial and fungal infection. The duration of neutropenia also contributes significantly to the risk of serious infections. Qualitative defects in neutrophil function have been described in hematological malignancies. These include defects in chemotaxis, phagocytosis, bactericidal capacity, and absence of respiratory burst that accompanies phagocytosis. Additionally, chemotherapeutic agents including corticosteroids can decrease phagocytosis and neutrophil migration (*Sharma and Lokeshwar*, 2005).

Febrile Neutropenia is a clinical syndrome that is characterized by an abnormally low number of neutrophil granulocytes. It is defined by the absolute neutrophil count (ANC) which can be calculated by multiplying total white blood cell count (WBC) by the percentage of polymorphnuclear cells (*Keng and Sekeres*, 2013).

The Infectious Diseases Society of America (IDSA) and the Immunocompromised Host Society (ICHS)'s definition of neutropenia refers to patient with an absolute neutrophil count (ANC) $<0.5 \times 10^9/L$ or $<1 \times 10^9/L$ that is predicted to fall below $0.5 \times 10^9/L$ within 48 hours of onset of fever or signs of sepsis.

Fever is defined as temperatures of ≥ 38 °C for at least one hour or a single record of ≥ 38.3 °C. The ICHS and other scientific societies have also added, as a criterion of fever, the presence of an oral temperature of ≥ 38 °C measured twice in 12 hours (*Link et al.*, 2003).

With Febrile neutropenia (FN) being the most common life-threatening complication of cancer therapy, the patients treated for hematologic malignancies have an estimated incidence of 43.3 cases per 1000 patients. FN accounts for 50% of deaths in patients receiving chemotherapy for solid tumors. It also accounts for 70% to 75% of deaths in patients receiving chemotherapy for acute leukemia. If not treated in the first 48 hours, mortality approaches 50% (*Bodey et al.*, 1985 and Caggiano et al., 2005).