معالجة التآكل والنمو البكتيري في المقول البترولية باستخدام مواد جديدة ذائد نشاط سطحي وآمنة بيئياً

رسالة مقدمة من الطالب محمد عطوة محمد عطوة بكالوريوس علوم (كيمياء) – كلية العلوم . جامعة عين شمس . 2005

لاستكمال متطلبات الحصول علي درجة الماجستير في العلوم البيئية

> قسم العلوم الأساسية البيئية معهد الدراسات والبحوث البيئية جامعة عين شمس

صفحة الموافقة على الرسالة معالجة المؤكل والنعو البكتيري في المقول البترولية باستخداء مواد معالجة التآكل والنعو البكتيري في المقول البترولية بالتخداء مواد معالجة التقاط مطحي وآمنة بيئياً

رسالة مقدمة من الطالب محمد عطوة محمد عطوة بكالوريوس علوم (كيمياء) – كلية العلوم . جامعة عين شمس . 2005

لاستكمال متطلبات الحصول علي درجة الماجستير في العلوم البيئية قسم العلوم الأساسية البيئية

وقد تمت مناقشة الرسالة والموافقة عليها:

اللجنة: التوقيع

1- ا.د/ماهر عبد العزيز الحشاش أستاذ الكيمياء العضوية . كلية العلوم جامعة عين شمس

2- ۱.د/هویدا طلعت زکی أستاذ الكیمیاء العضویة . كلیة البنات جامعة عین شمس

3- ا.د/نادية غريب حسن قنديل أستاذ الكيمياء العضوية . كلية البنات جامعة عين شمس

4- ا.د/نبیل عبد المنعم نجم أستاذ الكیمیاء التطبیقیة معهد بحوث البترول

معالجة التآكل والنمو البكتيري في المقول البترولية باستخدام مواد معالجة التآكل والنمو البكتيري في المقول البترولية بالتحدام مواد

رسالة مقدمة من الطالب محمد عطوة محمد عطوة بكالوريوس علوم (كيمياء) – كلية العلوم . جامعة عين شمس . 2005

لاستكمال متطلبات الحصول علي درجة الماجستير في العلوم البيئية قسم العلوم الأساسية البيئية

> تحت إشراف: -1- ا.د/نادية غريب حسن قنديل أستاذ الكيمياء العضوية. كلية البنات جامعة عين شمس

> > 4- د./نبيل عبد المنعم نجم أستاذ مساعد الكيمياء التطبيقية معهد بحوث البترول

ختم الإجازة : أجيزت الرسالة بتاريخ / /2014 موافقة مجلس المعهد / /2014 موافقة مجلس الجامعة / /2014

PROTECTION OF OIL FIELDS AGAINST CORROSION AND BACTERIAL GROWTH USING ECO-FRIENDLY INHABITORS

Submitted By Mohamed Atwa Mohamed Atwa

B.Sc. (Chemistry), Faculty of Science, Ain Shams University, 2005

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Science

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

APPROVAL SHEET

PROTECTION OF OIL FIELDS AGAINST CORROSION AND BACTERIAL GROWTH USING ECO-FRIENDLY INHABITORS

Submitted By

Mohamed Atwa Mohamed Atwa

B.Sc. (Chemistry), Faculty of Science, Ain Shams University, 2005

This thesis Towards a Master Degree in Environmental Science Has been Approved by:

Name Signature

1-Prof. Dr. Maher Abd El Aziz El Hashash

Prof. of Organic Chemistry Faculty of Science Ain Shams University

2-Prof. Dr. Hoida Talaat Zaki

Prof. of Organic Chemistry Faculty of Girls Ain Shams University

3-Prof. Dr. Nadia Gharieb Hassan Kandile

Prof. of Organic Chemistry Faculty of Girls Ain Shams University

4-Prof. Dr. Nabel Abdel Mneem Negm

Prof. of Applied Chemistry Egyptian Petroleum Research Institute

PROTECTION OF OIL FIELDS AGAINST CORROSION AND BACTERIAL GROWTH USING ECO-FRIENDLY INHABITORS

Submitted By Mohamed Atwa Mohamed Atwa

B.Sc. (Chemistry), Faculty of Science, Ain Shams University, 2005

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Science
Department of Environmental Basic Science

Under The Supervision of:

1- Prof. Dr. Nadia Gharieb Hassan Kandile

Prof. of Organic Chemistry Faculty of Girls Ain Shams University

2-Prof. Dr. Nabel Abdel Mneem Negm

Prof. of Applied Chemistry Egyptian Petroleum Research Institute

ACKNOWLEDGEMENT

All praise is to Allah, the Beneficent, the Merciful, without whose mercy and guidance this work would never have been started nor completed. I praise Him as much as the heavens and earth and what are in between or behind.

I would like to express my great gratitude and appreciation to the supervisor of this work, **Professor Dr. Nadia Gharib Kandile**, Professor of Organic chemistry, Faculty of Women – Ain Shams University, for her great effort in suggesting, planning and sponsoring this research, and her kind care during the progress of this work.

From my deep heart, many thanks are paid to **Professor Dr Nabel Abdel Moneem Negm,** Prof. of Applied Organic Chemistry, Petrochemicals Department, Egyptian Petroleum Research Institute (EPRI) For his interest, support, constructive criticism and fruitful discussion throughout this work

The author wishes also to express his great and warm gratitude to: All the scientific members in Petrochemicals Department, Egyptian Petroleum Research Institute For their guidance, and supporting

Finally, special thanks to my Family, for their continuous support, and encouragement.

CONTENTS

Title	Page No.
LIST OF TABLES	I
LIST OF FIGURES	iii
INTRODUCTION	1-76
Material and experiments: -chemicals -synthesis cationic surfactant(O,D,H) synthesis nonionic surfactants	77-79
Measurements: -surface tension & interfacial tension -emulsification -biodegradation -weight loss - Polarization	79-82
Result and discussion	83
-synthesis: -synthesis of cationic surfactant schiff base derivatives of -vanillin(SBO,SBD,SBH)	83-85
-synthesis of nonionic surfactants	86-87
Cationic surfactants: -surface activity -emulsification -biodegradability assessment	88-90
-corrosion inhibition evaluation -weight loss corrosion rate &inhibition efficiency	91-93

Title	Page No.
-corrosion inhibition mechanism	
-adsorption isotherm	
-polarization measurements	93-101
-surface activity-corrosion inhibition	
Nonionic surfactant :	102-104
-Surface activity	
-thermodynamics of adsorption &	
micellization	
-corrosion inhibition evaluation	105-118
-weight loss measurements	
- adsorption isotherm	
-potentiodynamic polarization measurements	
-electrochemical impedance spectroscopy	
-mechanism of corrosion inhibition	
SUMMARY	162-163
CONCULSION	164-165
REFERENCES	166
ARABIC SUMMARY	

LIST OF TABLES

Table No.	Title	Page No.
(1)	PROPERTIES OF THE CATIONIC SURFACTANTS	149
(2)	PROPERTIES OF THE NONIONIC	4.50
(2)	SURFACTANTS	150
	SURFACE AND THERMODYNAMIC	
(3)	PROPERTIES OF THE CATIONIC	151
	SURFACTANT AT 25 °C	
	FITTING PARAMETERS OF THE ADSORPTION	
(4)	ISOTHERM OF THE SYNTHESIZED INHIBITORS	152
	AT 25 °C	
	ELECTROCHEMICAL PARAMETERS	
	CALCULATED FROM POLARIZATION	153
	MEASUREMENTS ON THE CARBON STEEL IN	
(5)	1N HCL SOLUTION IN THE ABSENCE AND	
	PRESENCE OF THE DIFFERENT DOSES OF THE	
	SYNTHESIZED INHIBITORS (PPM BY WEIGHT)	
	AT 25 °C	
	SURFACE PARAMETERS OF THE	
(6)	SYNTHESIZED SCHIFF BASE NONIONIC	154
(0)	SURFACTANTS	134
(7)	GRAVIMETRIC AND KINETIC PARAMETERS	
	OBTAINED FOR CORROSION REACTION OF	
	CARBON STEEL IN 1 N HCL AT 25 OC IN	155-157
	ABSENCE AND IN PRESENCE OF DIFFERENT	133-137
	CONCENTRATIONS OF THE TESTED	
	INHIBITORS AT DIFFERENT TIME INTERVALS	

Table No.	Title	Page No.
(8)	ELECTROCHEMICAL PARAMETERS OF	
	CARBON STEEL IN 1 N HCL SOLUTION IN THE	
	ABSENCE AND PRESENCE OF THE DIFFERENT	158-159
	DOSES OF THE SYNTHESIZED NON IONIC	
	INHIBITORS (PPM BY WEIGHT) AT 25	
(9)	IMPEDANCE PARAMETERS OBTAINED FOR	
	THE CARBON STEEL IN 1 N HCL SOLUTION IN	
	THE ABSENCE AND IN THE PRESENCE OF	160-161
	DIFFERENT CONCENTRATIONS OF PDS, PHS,	
	POS AND PLS INHIBITORS AT 25 °C	

LIST OF FIGURES

Figure No.	Title	Page No.
(1)	IR spectra of SBO surfactant.	119
(2)	IR spectra of SBD surfactant	120
(3)	IR Spectra of SBH surfactant.	121
(4)	NMR Spectra of SBD surfactant	122
(5)	IR spectra of PDS surfactant.	123
(6)	NMR Spectra of PDS surfactant	124
(7)	NMR Spectra of PL surfactant	125
(8)	Surface tension vs. log C profile of the synthesized vanillin derived cationic surfactants at 25°C.	126
(9)	Relation between CMC values and the carbon chain length of the vanillin derived cationic surfactants.	127
(10)	Effect of hydrophobic chain length on the emulsification power of the vanillin derived cationic surfactants.	128
(11)	Biodegradation of the synthesized cationic surfactants.	129
(12a-c)	Relation between weight loss and immersion time of the carbon steel coupons in 1N HClsolution at 25°C, a. SBO inhibitor, b. SBD inhibitor, c. SBH inhibitor.	130
(13a-c)	Relation between corrosion rate (Cr) and immersion time of the carbon steel coupons in 1N HCl solution at 25°C, a. SBO inhibitor, b. SBD inhibitor, c. SBH inhibitor	131

Figure No.	Title	Page No.
(14)	Relation between corrosion inhibition efficiency (η %) of the tested inhibitors and inhibitor dose (ppm) on the carbon steel coupons corrosion in 1N HClsolution at 25°C.	132
(15)	Effect of chain length on the corrosion inhibition efficiency of the tested inhibitors on the corrosion of carbon steel coupons in 1N HCl solution at 25°C.	133
(16)	Effect of chain length on the corrosion inhibition efficiency of the tested inhibitors on the corrosion of carbon steel coupons in 1N HClsolution at 25°C.	134
(17)	Langmuir adsorption isotherm of the tested inhibitors at 25°C in 1 M HCl	135
(18a-d)	Potentiodynamic curves for the carbon steel electrode in 1N HClsolution at 25°C with and without different concentrations of the tested inhibitors: a. pure vanillin, b. SBO inhibitor, c. SBD inhibitor, d. SBH inhibitor	136
(19)	Surface tension vslog C of the nonionic surfactants at 25°C, POS; \square : PLS.	137
(20)	Effect of alkyl chain length on the corrosion rate of carbon steel in 1 N HCl in presence of different concentration of thenonionic inhibitors (ppm by weight) at 25°C	138
(21)	Langmuir isotherm adsorption model of nonionic inhibitors on the surface of carbon steel in 1 N HCl solution.	139
(22)a	Polarization curve of carbon steel corrosion in 1 N HCl in presence of different concentrations (ppm by weight) of POS inhibitor at 25°C.	140

Figure No.	Title	Page No.
(22)b	Polarization curve of carbon steel corrosion in 1 N HCl in presence of different concentrations of PDS inhibitor at 25°C.	141
(22)c	Polarization curve of carbon steel corrosion in 1 N HCl in presence of different concentrations of PHS inhibitor at 25°C.	142
(22)d	Polarization curve of carbon steel corrosion in 1 N HCl in presence of different concentrations of PLS inhibitor at 25°C.	143
(23)a	Nyquist plots of the corrosion of carbon steel in 1 N HCl containing different concentrations (by weight) of POS inhibitor at 25°C.	144
(23)b	Nyquist plots of the corrosion of carbon steel in 1 N HCl containing different concentrations (by weight) of PDS inhibitor at 25°C.	145
(23)c	Nyquist plots of the corrosion of carbon steel in 1 N HCl containing different concentrations (by weight) of PHS inhibitor at 25°C.	146
(23)d	Nyquist plots of the corrosion of carbon steel in 1 N HCl containing different concentrations (by weight) of PLS inhibitor at 25°C.	147
(24)	Equivalent circuit used to fit the metal/acid interface containing different concentrations of the tested inhibitors.	148
(25)	Schematic illustration of inhibitor adsorption on carbon steel/acid interface.	148

Scheme No.	Title	Page No.
(1)	Synthetic route of vanillin derived cationic surfactants	84
(2)	Chemical structure of the cationic surfactants.	85
(3)	Synthetic route of nonionic surfactants	86
(4)	Chemical structures of the synthesized nonionic inhibitors.	87