

Faculty of Science Microbiology Department

Antibacterial and antiviral activity of cyanobacteria and microalgae isolated from River Nile

A Thesis

Submitted for the degree of Master of Science as a partial fulfillment for requirements of the Master of Science

By

Rehab Hamdy Mahmoud Elsayed

Researcher assistant NRC B.Sc.Microbiology/Chemistry (2010)

Supervisors

Prof. Dr.

Mohamed Khaled Ibrahim

Professor of Bacteriology Chairman of Microbiology Department Faculty of Science Ain Shams University

Prof. Dr.

Gamila Hussin Ali

Professor of Hydrobiology
Water pollution research
Department, Environmental
pollution division
National Research Center

Prof. Dr. Mona Hafez Hetta

Professor of Pharmacognosy Chairman of Pharmacognosy Department Faculty of Pharmacy Beni-Suef University

(2014)

بسم الله الرحمن الرحيم

رَبِّ أَوْزِعْنِي أَنْ أَشْكُرَ نِعْمَتَكَ الَّتِي أَنْعَمْتَ عَلَيَّ وَعَلَى وَالِدَيِّ وَأَنْ أَعْمَلَ حَالِمًا تَرْخَاهُ وَأَدْنِلْنِي بِرَمْمَتِكَ فِي عِبَادِكَ وَأَدْنِلْنِي بِرَمْمَتِكَ فِي عِبَادِكَ الطَّالِدِينَ

النمل: 19

صدق الله العظيم

Declaration

This thesis has not previously been submitted for any other university. The references were being checked whenever possible; show the extant to which I have availed myself of the work of other authors.

Rehab Hamdy Mahmoud El-Sayed

<u>Acknowledgement</u>

Firstly and forever, Thanks to ALLAH, who give me everything in my life, and I supplicate to Allah to make my life in a perfect way.

I wish to express my appreciation to **Prof. Dr. Mohamed Khaled Ibrahim,** Professor of Bacteriology & Chairman of
Microbiology Department, Faculty of Science, Ain Shams
University, for his much valued guidance, detailed review,
constructive criticism and excellent advice during the preparation
of this thesis.

Words won't be enough and will stand short when coming to express my great appreciation for **Prof. Dr. Gamila Hussin Ali,**Professor of Hydrobiology, Water pollution Department,

Environmental research, National Research Center, for suggesting the theme of my thesis, for her valued guidance, encouragement and for her supervision from the initial to the final level which enabled me to develop and understanding of the subject.

I would like to express my sense of gratitude to **Prof. Dr.**Mona Hafez Hetta, Professor of pharmacognosy, Faculty of pharmacy, Beni-Suef University for her guidance, and parental care she provided throughout my research work.

Special thanks are expressed to **Prof. Dr. Gamila El- Taweel,** Professor of Bacteriology, Water pollution Department,
Environmental research, National Research Center, for her
generous help in supervising the experimental work and
preparation of the manuscript.

I would like also to thank **Prof. Dr. Waled Morsy El-Senousy** Professor of virology, Water pollution Department, Environmental research, National Research Center, for his assistance in antiviral experiments.

I would like also to thank **Prof. Dr. Mohamed M. Abou Zaid** Professor of Aquatic Biology, Botany and Microbiology

Department, Faculty of Science, Al-Azhar University for his cooperation and designing the photobioreactor which was helpful apparatus for the cultivation of the promising isolates and enable this work to be accomplished.

Moreover, I would like to acknowledge gratefully all the members of Water pollution Department, Environmental research, National Research Center, for their cooperation.

Finally, I would like to express my deep thanks to my family especially my mother for their love, support, patience, and encouragement throughout my undergraduate and postgraduate career.

Rehab Hamdy Mahmoud Elsayed

Contents

Abstract1		
Introd	luction3	
Aim o	f work8	
Revie	w of literature (part I)9	
1.	Nature and biodiversity of cyanobacteria and microalgae9	
2.	Ecological roles of cyanobacteria and microalgae12	
3.	Cyanobacteria and microalgae changing science fields14	
3.1.	Red biotechnology: application to medicine and	
	pharmaceuticals14	
3.2.	Green biotechnology: application to food and environment 29	
3.2.1.	Application to food29	
3.2.2.	Application to environment34	
3.2.3.	White biotechnology: application to energy37	
Mater	rial and Methods41	
1.	Collection and maintenance of cyanobacteria and microalgae	
	species41	
2.	Isolation, purification and identification of species41	
3.	Chlorophyll "a" determination43	

4.	Determination of biochemical constituents44
4.1.	Total carbohydrate contents44
4.2.	Different sugars content45
4.2.1.	Extraction of polysaccharide45
4.2.2.	Test for the identity of the isolated polysaccharide units45
4.3.	Determination of total protein content47
4.4.	Determination of amino acids using amino acid analyze48
4.5.	Determination of lipid conten49
4.5.1.	Preparation of the unsaponifiable matter50
4.5.2.	Fractionation of unsaponifiable matter50
4.5.3.	Preparation of fatty acids51
4.5.4.	Identification of fatty acids components by Gas Liquid
	Chromatography (GLC)52
4.6.	Determination of total phenolics contents53
4.7.	Determination of total tannin contents54
4.8.	Determination of total flavonoid contents55
5.	Preparation of cyanobacterial extracts for antibacterial and
	antiviral assessment56
5.1.	Preparation of crude methanol extract for the different
	isolates

5.2.	Fractionation of crude methanol extract with different
	solvents57
6.	Antimicrobial activities of cyanobacteria/microalgae
	extract57
6.1.	Antimicrobial activity of isolates extracts: Disc diffusion
	method59
6.2.	Determination of percentage of inhibition (pour plate method)
	60
7.	Cytotoxicity and antiviral activity of cyanobacteria /microalgae
	extracts61
7.1.	Cytotoxicity assay to estimate the non toxic dose of cyanobacteria
	and algae extracts on Huh 7.5, MA 104, Hep-2 and BGM cell
	line62
7.1.1.	Cell morphology evaluation by inverted light microscopy63
7.1.2.	Cell viability test by Trypan blue dye exclusion method64
7.2.	Determination of rotavirus Wa strain, adenovirus type7,
	adenovirus type 40, and coxsackievirus B4Titers using plaque
	assay64
7.3.	Nested-PCR for detection of the tested viruses65

7.4.	Antiviral effect of different extracts/fractions on rotavirus Wa
	strain, adenovirus type 7, adenovirus type 40 and coxsackievirus
	B466
7.5.	Cell Culture-Real time RT-PCR (CC-Real time-RT-PCR) test to
	quantify the number of infectious particles of HCV before and
	after treatment of algal materials68
7.6.	Data analysis69
Result	ts70
1.	Isolation of cyanobacteria and microalgae monoculture
	species70
2.	Morphological identification of isolates71
3.	Chlorophyll "a" Content76
4.	Biochemical constituent83
4.1.	Carbohydrate content
4.2.	Different sugars content
4.3.	Protein content86
4.4.	Amino acids profile in different cyanobacteria and microalgae
	species
4.5.	Total lipid content90
4.6.	Fatty acids profile in different cyanobacteria and microalgae
	species92

4.6.1.	Saponifiable fatty acids92
4.6.2.	Total unsaponifiable matter94
4.7.	Total phenolics content95
4.8.	Total tannins content96
4.9.	Total flavonoids content98
5.	Antimicrobial activity of cyanobacteria/microalgae
	extracts100
5.1.	Disc diffusion qualitative method101
5.1.1.	Antimicrobial activity of the crude methanol extracts of the
	isolates101
5.1.2.	Antimicrobial activity of <i>n</i> -hexane fraction of different
	isolates
5.1.3.	Antimicrobial activity of dichloromethane fraction of different
	isolates107
5.1.4.	Antimicrobial activity of ethyl acetate fraction of different
	isolates
5.1.5.	Antimicrobial activity of <i>n</i> -butanol fraction of different
	isolates111
5.1.6.	Antimicrobial activity of water fraction of different
	isolates

5.1.7.	Antimicrobial activity of crude water extract of different	
	isolates	
5.2.	Pour plate quantitative method117	
5.2.1.	Antibacterial activity (percentage of inhibition) of cyanobacteria	
	/microalgae against gram negative	
	bacteria117	
5.2.2.	Antibacterial activity (percentage of inhibition) of cyanobacteria	
	/microalgae against gram positive	
	bacteria127	
5.2.3.	Antifungal activity (percentage of inhibition) of cyanobacteria	
	/microalgae against Candida albicans ATCC 10231130	
6.	Cytotoxicity and antiviral activities of the isolated cyanobacteria	
	/microalgae extracts132	
6.1.	Non toxic dose of cyanobacteria and algae extracts132	
6.2.	Antiviral activities of isolated cyanobacteria/microalgae extra	
	against rotavirus Wa, adenovirus type 7, adenovirus type 40 and	
	Coxsackievirus B4 viruses	
6.3.	Antiviral activities of isolated cyanobacteria/microalgae extracts	
	against HCV genotype 4	
Discus	ssion137	
Cultiv	ration techniques (part II)163	

1.	History of cyanobacteria and microalgae cultures and	different	
	cultivation techniques	163	
1.1.	Open ponds	165	
1.2.	Photobioreactors	166	
2.	Harvesting cyanobacteria and microalgae	172	
3.	Batch cultivation technique	173	
4.	Continous cultivation technique	177	
4.1.	Purpose of the photobioreactor	178	
4.2.	Principals of the photobioreactor	179	
4.3.	Design Criteria	179	
4.4.	Specifications	180	
5.	Growth conditions of Spirulina platensis in	n the	
	photobioreactor	188	
Concl	lusion	198	
Recon	nmondations	202	
Refer	ences	203	
Englis	sh Summary	286	
Arabic Summary			

<u>Dedication</u>

I am deeply and forever indebted to:

My dear mother

My late father

My sisters & brother

List of figures

Figure no.	Title	Page
1	Spirulina platensis processing forms	34
2	Standard curve of gallic acid	54
3	Standard curve of rutin	56
4	Morphological characteristics of isolated cyanobacteria	72
5	Morphological characteristics of isolated green microalgae	76
6	Growth characteristics of isolated cyanobacteria species	78
7	Growth characteristics of isolated microalgae species	81
8	Maximum standing biomass (Chlorophyll "a") of candidate cyanobacteria/microalgae.	82
9	Total carbohydrate content of all candidate cyanobacteria/ microalgal species	84
10	Total protein content of all candidate cyanobacteria/ microalgal species	87
11	Total lipid content of all candidate cyanobacteria/ microalgal species	91
12	Total phenolics content of all candidate cyanobacteria/ microalgal species	96
13	Total tannins content of all candidate cyanobacteria/ microalgal species	98
14	Total flavonoids content of all candidate cyanobacteria/ microalgal species	100

List of figures

15	Different designs to open pond cultivation system	166
16	Different photobioreactors (PBR)	168
17	Stock culture of isolates	175
18	Cyanobacterial/microalgae isolates recultivation	176
19	Preliminary design for closed photobioreactor	182
20	Diagram demonstrating the different parts of the reactor glass vessel	183
21	Principal components of the experimental Photobioreactor prototype	184
22	Biomass cultivation of <i>Spirulina platensis</i> in the photobioreactor	191