Low dose steroids in early severe acute respiratory distress syndrome

Thesis Submitted for Partial Fulfillment of Master Degree in Critical Care Medicine

Investigator

Ahmed Hares Mohamed Taha

 $\mathcal{MB}.\mathcal{B}.\mathcal{CH}$

Supervisors

Ahmed Hussein El Sherif MD.

Professor of critical care medicine, Critical care department, Cairo University

Ayman Heikal MD Mohammed Khaled MD.

Lecturer of critical care medicine, Critical care department, Cairo University

Lecturer of critical care medicine, Critical care department, Cairo University

Faculty of Medicine Cairo University 2009

Low dose steroids in early severe acute respiratory distress syndrome Ahmed Hares Mohamed Taha, MB.B.CH, Ahmed Hussein El Sherif MD. Ayman Heikal MD., Mohammed Khaled MD.

Abstract

Introduction: Acute respiratory distress syndrome places a significant burden on the health-care system, with an estimated prevalence of 7% of ICU admissions and an unacceptable hospital mortality rate of 50%. Pulmonary and systemic inflammation are the pathophysiologic hallmarks of this syndrome, and activation of the glucocorticoid receptor in pulmonary and circulating cells is an essential step in restoring homeostasis. While changing the ventilator settings to low tidal volume reduces systemic inflammation with a favorable impact on survival, a concomitant antiinflammatory pharmacologic intervention should lead to a more rapid resolution of ARDS and earlier extubation. **Methods:** Our study was conducted on thirty patients admitted in the Critical Care Department, Cairo University Hospital with proven diagnosis of Early Severe ARDS. The studied population was divided into two groups: Group I: Twenty patients were subjected to methylprednisolone treatment protocol plus conventional management for ARDS and *Group II*: Ten patients were kept on conventional management for ARDS. All the studied population were subjected to full history taking, detailed clinical examination, full laboratory investigations, pancultures, APACHE II scoring system, MODS score on days(1 and 7), LIS on days (1,2,3,5 and 7) serial chest radiographs invasive arterial line insertion, pulmonary artery catheter insertion. serial measurements of CRP on days (1,3,5 and 7) testing of adrenal function, lung protective strategy protocol and evaluation of the outcome as regards 1-point reduction in LIS or successful extubation, duration of MV, length of ICU stay and ICU mortality.

Results: In our study, there were significantly lower values of MODS score on day (7) in group I compared to group II patients (1.8+1.1 vs 2.7+0.9 respectively, P value: 0.022), also we found that there was statistically significant decline in *LIS* in day (7) in group I compared to group II patients (1.925+0.815 vs 2.85+0.5676 respectively P value: 0.003) and a significant lower *CRP* values on day 7 in group I compared to group II patients was found (8.35+7.741mg/dL vs22.1 +16.394 mg /dL, p value:0.004) respectively. By day 7: The response of the two groups clearly diverged; the methylprednisolone-treated group had a statistically significant difference as regards a)1-point reduction in LIS (70% of patients in group I vs 20% of patients in group II, P value: 0.028) and b) successfully extubation (11 patients in group I vs 1 patient in group II,P value: 0.048), moreover the treated patients had a statistically significant decrease in number of days of MV of (11.15 + 7.08 in group I vs 20.9+9.08 in group II respectively, P value 0.004). Our study did not demonstrate any significant difference in the incidence of new infection, neuromuscular weakness, uncontrolled hyperglycemia and GIT bleeding complications between the treatment and control groups, (p values: 0.7945,0.954, 0.446 and 0.954) respectively. Also no significant difference in the *length of ICU stay* and *ICU* survival between group I and group II patients was found (P value: 0.846 and 0.06) respectively. Conclusions: The use of low-dose corticosteroids provides evidence of efficacy in EARLY **SEVERE ARDS** (accelerated resolution of systemic and pulmonary manifestations of ARDS with significant reduction in duration of mechanical ventilation) with less adverse effect.

Key words: ARDS; duration of mechanical ventilation; glucocorticoid treatment; infections; systemic inflammation

Abbreviations: APACHE _ acute physiology and chronic health evaluation; Fio2 _ fraction of inspired oxygen; LIS _ lung injury score; MODS _ multiple organ dysfunction syndrome; PEEP positive end-expiratory pressure4

Acknowledgement

For **ALLAH** the merciful, the compassionate, I kneel to express my gratitude for all the countless gifts I have been offered, including those who gave their hands to enable me to fulfill this work.

Thanks to **Prof. Dr. Sherif Mokhtar**, our Master & the founder of our department, we always owe him much. He offered us not only facilities to complete our work but also the spirit of being eager to gain more experience and skills. Words are not sufficient to express my deep gratitude for him.

Special thanks to **Prof. Dr. Ahmed El Sherif**, Prof. of Critical Care Medicine, Cairo University, for his continous help and support. I am extremely grateful to him for his generous advice and for his guidance and assistance throughout the whole work. I owe him great deal of refining & revising this work through the long time & patience he offered me.

I would deeply like to thank **Dr.Ayman Heikal**, Lecturer of Critical Care Medicine for his help, support and his simplicity in handling matters.

My true appreciation is due to **Dr. Mohamed Khaled,** Lecturer of Critical Care Medicine for his meticulous supervision, for his kind guidance, valuable instructions, generous help, his sincere efforts and fruitful encouragement.

No words are sufficient to express my deep appreciation and profound gratitude to **Prof. Dr. Hassan Khaled,** Professor and Chief of Critical Care Medicine Department and **Prof. Dr. Alia Abd El Fattah** Professor of Critical Care Medicine for their abundant encouragement, continuous support and endless giving.

A special thanks for my colleagues **Dr. Mahmoud Khaled, Dr. Khaled Zeineldeen, Dr. Mohamed Aly and Dr. Mohamed Hattab** for their great efforts and support in helping me understand the basic concepts of ventilation and thesis work up.

I wish to thank deeply Mrs. **Manal Youssef**, Critical Care Medicine Department for her patience in performing the computer work of this thesis.

Finally I am so thankful and honored to belong to the critical care medicine department, the land of innovation and fruitful research.

Ahmed Haxes

I am greatly indepted to my father, my mother, for induring the suffering of being away from whom for along time.

Table of Content

Item	Page
Introduction	1-3
Aim of Work	4
Review:	5-102
• Chapter I: Acute Respiratory Distress Syndrome	5-51
• Chapter II: Glucocorticoids	52-102
Patients & Methods	103-120
Results	121-165
Discussion and Limitations	166-195
Summary	196-200
Conclusion & Recommendations	201-204
References	205-245
Arabic Summary	5-1

$List\ Of\ Abbreviations$

ABGs	
ABUS	arterial blood gases
ACM	alveolocapillary membrane
ACTH	adrenocorticotropic hormone
AFC	alveolar fluid clearance
AIDS	Acquired immunodeficiency syndrome
ALI	Acute lung injury
AP-1	activator protein-1
APACHE II	Acute Physiology and Chronic Health Evaluation
APS	Acute physiology score
ARDS	acute respiratory distress syndrome
ARDSexp	extra pulmonary causes of ARDS
ARDSp	pulmonary causes of ARDS
BAL	Bronchoalveolar lavage
CBG	corticosteroid-binding globulin
CMV	controlled mandatory ventilation
CNS	central nervous system
CO2	Carbon diaoxid

COX-2	cyclooxygenase-2
CRH	Corticotropin-releasing hormone
CRP	C-reactive protein
СТ	Computed tomography
CXC	Chemokine
CXCR4	chemokine receptor 4
DAD	diffuse alveolar damage
DIC	disseminated intravascular coagulation
DM	Diabetes Mellitus
ECMO	Extracorporeal membrane oxygenation
EMG	electromyography
ENaC	epithelial sodium channel
ETT	endotracheal tube
FDA	Food and Drug Administration
FiO2	fraction of inspired oxygen
GC	glucocorticoid
GI	Gastrointestinal
GIT	Gastrointestinal Tract

GREs	glucocorticoid responsive elements
GRs	glucocorticoid receptors
GRα	glucocorticoid receptor α
HDR	host defense response
HFV	high-frequency ventilation
HIR	host inflammatory response
HPA	hypothalamic-pituitary-adrenal
hsp	heat-shock protein
ICU	intensive care unit
IFNγ	interferon
IgE	Immuneglobuline E
IGF-I	insulin-like growth factor-I
IL	interleukin
IL-1ra	interleukin receptor antagonist
iNO	inhaled nitric oxide
K	Potassium
LIS	Lung injury score
Ly	lung lymphatics

MLIS	Murray lung injury score
MMR	measles, mumps, rubella
MODS	multiple organ dysfunction syndrome
MV	Mechanical ventilation
Na	Sodium
NAC	N-acetylcysteine
NF-κB	nuclear factor-κB
NIH	National Institutes of Health
NO	nitric oxide
P value	probability value
PA	Pulmonary artery
PaO2	partial pressure of arterial oxygen
PBL	peripheral blood leukocytes
PBW	predicted body weight
PCO2	partial pressure of arterial carbon diaoxid
PCWP	Pulmonary Capillary Wedge Pressure
PEEP	positive end-expiratory pressure
PF ratio	partial pressure of arterial oxygen/fraction of inspired oxygen

PGE1	Prostaglandin E1
PHV	permissive hypercapnic ventilation
PLA2	phospholipase A2
PMN	Polymorphsnuclearleukocyte (neutrophil)
PV	Pressure volume
QO2	oxygen delivery
RA	rheumatoid arthritis
RAP	right atrial pressure
RM	recruitment maneuver
RR	Respiratory rate
SD	Standard Deviation
SLE	Systemic lupus erythromatosis
SpO2	oxyhemoglobin saturation
SRC-1	steroid receptor coactivator-1
TIA	Transien Ischemic attack
TNF	Tumor necrosis factor
VA/Q	ventilation–perfusion ratio
VALI	ventilator-associated lung injury

VILI	ventilator-induced lung injury
Vo2	oxygen uptake
V_{t}	Tidal Volume
vWF	von Willebrand factor

List Of Tables

Item	Page No.
Table (1): Definitions of the acute respiratory distress syndrome.	8
Table (2): Clinical Disorders Associated with the Development of Acute	11
Lung Injury and Acute Respiratory Distress Syndrome (ARDS)	
Subcategorized into Those Commonly Associated with Direct and Indirect	
Injury to the Lung	
Table (3): Results of ventilator management in patients with acute	33
respiratory distress syndrome or acute lung injury	
Table (4): Results of Randomized Trials of Pharmacologic Treatments and	50-51
Ventilation Strategies for Acute Lung Injury (ALI) and Acute Respiratory	
Distress Syndrome (ARDS)	
Table (5): Comparison of of biological potency of commonly	56
glucocorticoid preparations	
Table (6): Guidelines for pharmacological glucocorticoid therapy Smokers	70
and non smokers in both groups	
Table (7): Some Therapeutic Indications for the Use of Glucocorticoids in	71
Nonadrenal Disorders.	
Table (8): Major side effects associated with corticosteroid therapy.	73
Table (9): Meduri protocol: Prolonged corticosteroid taper for late-phase	95
acute respiratory distress syndrome	
Table (10): National Heart, Lung, and Blood Institute protocol: Prolonged	98
corticosteroid taper for late-phase acute respiratory distress syndrome.	

Item	Page No.
Table (11): Summary of trials examining role of corticosteroids in the	101
prevention of acute respiratory distress syndrome (ARDS) in adults.	
Table (12): Summary of trials examining role of corticosteroids in the	102
treatment of acute respiratory distress syndrome (ARDS) in adults.	
Table (13): APACHE II	111
Table (14): The multiple organ dysfunction score (MODS)	113
Table (15): Murray lung injury score (MLIS)	115
Table (16): Age distribution in patients of both study groups	122
Table (17): Gender distribution in patients of both study group	123
Table (18): Number of smokers in both groups	124
Table (19): Incidence of hypertension and diabetes in patients of both study	125
groups	
Table (20): Organ dysfunction in patients of both groups	126
Table (21): incidence of pulmonary and extrapulmonary etiologies of	127
ARDs in both groups	
Table (22): incidence of sepsis in both groups	128
Table (23): APACHE II scoring in both study groups patients	129
Table (24): MODS score at day(1) and day (7) in patients of both study	130
groups	
Table (25): Comparison of MODS score between day (1) and day (7) in	131
group I and group II patients	
Table (26): Values of P/F ratio measured from day (1) to day(7) in patients	132
of both study groups	
Table (27): Comparison of P/F ratio between day (1) and day (7)	133

Item	Page No.
Table (28): comparison of PEEP values between day 1 and day 7 in group I	134
and group II patients	
Table (29): PEEP values from day (1) and day (7) in patients of both study	135
groups	
Table (30): Pulmonary compliance measured from day (1) to day(7) in	136
both study groups patients	
Table (31): Comparison of estimated means of pulmonary compliance	137
between day (1) and day (7) in patients of both group I and group II	
Table (32): Chest radiography score from day (1) to day (7) in patients of	138
both study groups	
Table (33): Comparison of chest radiography score between day (1) and	139
day (7) in group I and group II patients	
Table (34): Lung injury score (LIS) measured form day(1) to day (7) in	140
patients of both study groups	
Table (35): Comparison of LIS between day (1) and day (7) in group I and	141
group II patients	
Table (36): C-reactive protein (CRP) measured from day (1) to day (7) in	142
both study group	
Table (37): Comparison of CRP values between day 1 and day (7) in	143
patients of both study groups	
Table (38): Cortisol level in both study groups patients	144
Table (39): Number of patients diagnosed to have adrenal insufficiency in	145
both study groups	

Item	Page No.
Table (40): comparison of different positive cultures' result between both	146
study groups patients on day(1)	
Table (41): comparison different positive cultures results between both	147
study groups patients on day (7)	
Table (42): Comparison between number of patients achieved reduction in	148
LIS \geq 1 by day (7) between both study groups	
Table (43): Number of patients successfully extubated by day (7)in patients	149
of both groups	
Table (44): : Number of patients that can breath unassisted by day(7) in	150
both study groups	
Table (45): Incidence of new infection in patients of both study groups	151
(group I & group II)	
Table (46):Incidence of neuromuscular weakness in both study groups	152
patients	
Table (47): Incidence of uncontrolled hyperglycemia between both study	153
groups patients	
Table (48): Incidence of GIT bleeding between patients both of groups	154
Table (49): Incidence of pneumothorax between both study groups	155
patients:	
Table (50): Duration of mechanical ventilation on both study group	156
patients	
Table (51): Length of ICU stay on both study groups patients	157
Table (52): Percentage of survived patients between both study groups	158
Table (53): CRP values by day (7) in survived and non survived patients in	159
group I	