Ain Shams University Faculty of Computer & Information Sciences Information Systems Department

Dynamic distributed database over cloud environment

A Thesis submitted to Information Systems Department, Faculty of Computer and Information Sciences, Ain Shams University, in partial fulfillment of the requirements for the master degree in Computer and Information Sciences

By

Ahmed Ezzat Abd Alraof Mohamed

Teaching Assistant at Information Systems Department, Faculty of Computer and Information Sciences, Ain Shams University.

Under Supervision of

Prof. Dr. Mohammed Fahmy Tolba

Professor, Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University.

Prof. Dr. Nagwa Lotfy Badr

Professor, Information Systems Department, Faculty of Computer and Information Sciences, Ain Shams University.

Acknowledgement

First and foremost, I am grateful to Almighty Allah for His immense blessings and graciously helping me to complete this thesis.

This thesis owes its existence to the help, support, and inspiration of many people. In the first place, I owe my deepest gratitude to my main supervisor Prof. Dr. Mohamed Fahmy Tolba whose sharp sense of research direction have provided invaluable feedback to improve the quality of this thesis. This thesis would not have been possible without his sound advice and encouragement. I would like to express my sincere appreciation and gratitude to my associate supervisor, Prof. Dr. Nagwa Lotfy Badr for her tremendous amount of support, insightful comments, and invaluable assistance.

Last, but definitely not least, I would like to thank all my friends and family members for their endless love and support. My love and heartfelt thank to my parents for their lifelong support in all my endeavors.

Abstract

Distributed Database System (DDS) typically consist of a number of interrelated databases (fragments) located at different geographic sites. These sites can communicate through a network and is managed by a distributed database management system (DDBMS).

The most business organizations need more fixed servers to store their large databases that consist of very large amounts of data, which used by applications at different physical locations. These organizations will charge a lot to design the distributed database infrastructure of their system, especially in the beginning of the work.

Cloud computing allows these organizations to tap into a virtual computing and storage resources over the internet and also benefit from utility like reliability, costs, scalability, as well as pay only for what they use.

However, many emerging applications of distributed database systems generate very dynamic workloads with frequent changes in access patterns from different sites. Consequently, in this realistic dynamic environment, where the access probabilities of nodes to fragments and its replicas change over time, the optimum data re-allocation and replication of those fragments is the only way to increase the performance, efficiency, reliability and availability of the distributed database.

The thesis first address a cluster based distributed and parallel database design over a cloud environment. The proposed architecture and its components are designed for parallel processing the client queries and allow users to access the distributed database from anywhere. It also allows vertical and horizontal fragmentation, allocation and replication decisions to be taken statically at the initial stage of designing the distributed database, without the need of empirical data about query executions. Moreover, it clusters the distributed database sites into disjoints clusters.

Then, a dynamic re-allocation and replication algorithm called optimal fragment reallocation and replication (OFRAR) algorithm was proposed. Which allow migration and/or replication decisions to be taken by each cluster independently of other clusters. This makes it possible to use this algorithm without communication overhead or even using the proposed algorithm on all sites in the system.

Finally, The thesis addresses two types of fragmentation. The first type of the fragmentation is the vertical fragmentation. In this thesis a Full

Vertical Fragmentation, Allocation and Replication (FVFAR) scheme over the cloud environment was presented. The proposed scheme addresses the limitation of the previous vertical fragmentation solutions. It also provides vertical fragmentation, allocation and replication as a service over the cloud.

The second type of fragmentation addressed in this thesis is the horizontal fragmentation. In this thesis an enhanced horizontal fragmentation, allocation and replication algorithm was proposed, which takes the horizontal fragmentation, allocation and replication decisions at the initial stage of designing the distributed database.

TABLE OF CONTENTS

Acknowledgment	1
Abstract English	2
Abstract Arabic	4
Table of Contents	6
List of Figures	9
List of Tables	10
List of Abbreviations	13
List of Publications	15
Chapter 1: Introduction	16
1.1 Overview	16
1.2 Problem Definition	17
1.3 Contributions	19
1.4 Thesis Organization	21
Chapter 2: Literature Review	23
2.1 Dynamic Fragmentation, Allocation And Replication	23
2.2 Clustering Methodologies Of Distributed Database	30
2.3 Vertical Fragmentation Methodologies As Well As Their Limitations And Future Work	31
2.4 Summary	34

Chapter 3	: The Proposed Cluster Based Distributed and	35
Parallel D	atabase Design over a Cloud Environment	
3.1	Application Client Layer	36
3.2	Distributed Database System Manager (DDBSM) Layer	37
	3.2.1 Add A New Database Module	37
	3.2.2 Clustering Distributed Database Sites Module	39
	3.2.3 Client Queries Processing Module	40
3.3 1	Distributed Database Cluster Layer	42
	3.3.1 Cluster Node	42
	3.3.2 Cluster Head	43
	a. Manage Cluster Node Data	44
	b. Load Balance Of The Cluster	44
	c. Dynamic Re-Allocate And Replicate Fragments	4 4
3.4 \$	Summary	45
Chapter 4	: Dynamic Re-Allocation and Replication Algorithm	46
4.1 (Create Replica in Local Cluster	48
4.2 I	Re-allocation in a Remote Cluster	50
4.3 I	Re-allocation in Local Cluster	54
4.4 (Create Replica in Remote Cluster	55
4.5 \$	Summary	56
Chapter 5	: Vertical and Horizontal Fragmentation, Allocation cation Scheme of Distributed Database	57
5.1	Vertical Fragmentation, Allocation and Replication of Distributed Database	57
	5.1.1 Generate ECRUD Matrix	59

5.1.2 Generate Attribute Site Usage and Similarity	63
Matrix	
5.1.3 Vertical Fragmentation	65
5.1.4 Fragment Allocation and Replication	67
5.2 Enhanced Horizontal Fragmentation, Allocation and	73
Replication of Distributed Database	1.
5.3 Summary	75
Chapter 6: Experimental Results	77
6.1 Cluster Based Distributed and Parallel Database Design	77
Over A Cloud Environment	11
6.1.1 The Simulated Environment	77
6.1.2 The Amazon Cloud environment	78
6.2 The Optimal Fragment Re-Allocation and Replication	80
(OFRAR) Algorithm	OC
6.2.1 The Re-allocation Decision In Remote Clusters	80
6.2.2 Creating a Replica on a Remote Cluster	82
6.2.3 Creating a Replica on a Local Cluster	83
6.3 Vertical Fragmentation, Allocation And Replication Scheme Of Distributed Database	85
6.4 The Full Vertical Fragmentation, Allocation And Replication Scheme Of Distributed Database	92
6.5 Enhanced Horizontal Fragmentation, Allocation and Replication Algorithm	101
6.6 Summary	104
Chapter 7: Conclusions and Directions for Future Research	106
7.1 Conclusions	106
7.2 Directions for Future Research	108
References	109

LIST OF FIGURES

3.1	The Proposed Clustered Based Distributed and Parallel Database Design		
3.2	Flow Diagram of Query Processing		
4.1	Dynamic Re-allocation and the Replication Decision Tree		
4.2	Cluster Descriptions		
5.1	The Proposed Full Vertical Fragmentation, Allocation and	58	
	Replication Scheme (FVFAR)		
5.2	Pseudo Code For Generating ECRUD Matrix	63	
5.3	The detailed steps to generate the MST Prim's algorithm		
5.4	Generated Minimum Spanning Tree		
5.5	Pseudo Code for the Enhanced Allocation and Replication Algorithm		
6.1	Evaluation Results of the Simulated Environment	78	
6.2	Clustered Cloud Environment		
6.3	Evaluation Results of the Amazon cloud environment		
6.4	Re-allocation in Remote Clusters		
6.5	Numbers of Migration		
6.6	Create a Replica in a Remote Cluster	83	
6.7	Overload of the Site That Holds the Fragment	84	
6.8	Time Taken To Execute Queries		
6.9	Minimum Spanning Tree		
6.10	Total Communication Cost To Execute Distributed Database System Queries	99	

LIST OF TABLES

4.1	The Notation Used	47
4.2	Case 1Descriptions	52
4.3	Case 1 Description after Eliminating the Sites That Do Not Exceed the Threshold Value	53
4.4	Case 2 Descriptions	53
4.5	Case 2 Descriptions after Eliminating the Sites That Do Not Exceed the Threshold Value	54
5.1	THE RELATION USE CASE MATRIX	60
5.2	THE APPLICATION USE CASE MATRIX	60
5.3	SITE ALLPICATION MATRIX	61
5.4	SYSTEM ACTIVITY DIAGRAM MATRIX	61
5.5	THE ECRUD MATRIX	62
5.6	THE ATTRIBUTE SITE USAGE MATRIX (ASUM)	64
5.7	THE ATTRIBUTE SIMILARITY MATRIX (ASM)	65
5.8	THE ATTRIBUTE MANIPULATE MATRIX (AMM)	68
5.9	THE ATTRIBUTE READ MATRIX (ARM)	70
5.10	THE FRAGMENT MANIPULATE MATRIX (FMM)	71
5.11	THE FRAGMENT READ MATRIX (FRM)	71
5.12	THE FRAGMENT MANIPULATE COST MATRIX (FMCM)	72
5.13	THE FRAGMENT READ COST MATRIX (FRCM)	73
6.1	Queries Distribution	80
6.2	Access Sequence of Nodes to Fragment F1	80
6.3	Read Queries Distribution	83

6.4	Manipulate Queries Distribution	83
6.5	Read Queries Distribution	84
6.6	Manipulate Queries Distribution	84
6.7	THE ATTRIBUTE SITE USAGE MATRIX (ASUM)	85
6.8	THE ATTRIBUTE SIMILARITY MATRIX (ASM)	86
6.9	MINIMUM SPANNING TREE DETAILS	86
6.10	THE ECRUD MATRIX	88
6.11	THE ATTRIBUTE MANIPULATE MATRIX (AMM)	89
6.12	THE ATTRIBUTE READ MATRIX (ARM)	89
6.13	THE NUMBER OF MANIPULATE AND READ OPERATIONS OF EACH SITE TO EACH FRAGMENT	90
6.14	COMMUNICATION COST (CC)	92
6.15	THE RELATION USE CASE MATRIX	93
6.16	THE APPLICATION USE CASE MATRIX	93
6.17	SITE ALLPICATION MATRIX	93
6.18	SYSTEM ACTIVITY DIAGRAM MATRIX	94
6.19	THE ECRUD MATRIX	95
6.20	THE ATTRIBUTE SITE USAGE MATRIX (ASUM)	95
6.21	THE ATTRIBUTE SIMILARITY MATRIX (ASM)	96
6.22	THE ATTRIBUTE MANIPULATE MATRIX (AMM)	96
6.23	THE ATTRIBUTE READ MATRIX (ARM)	97
6.24	THE FRAGMENT MANIPULATE MATRIX (FMM)	97
6.25	THE FRAGMENT READ MATRIX (FRM)	97
6.26	THE FRAGMENT MANIPULATE COST MATRIX (FMCM)	98
6.27	THE FRAGMENT READ COST MATRIX (FRCM)	98
6.28	FRAGMENTS ALLOCATION AND REPLICATION	99

6.29	MCRUD Matrix	101
6.30	Account Relation	102
6.31	ALP Table	102
6.32	Fragment 1	102
6.33	Fragment 2	103
6.34	Fragment 3	103
6.35	Final Result of Allocation and Replication	104

LIST OF ABBREVIATIONS

DDBMS Distributed Database Management System

DDBS Distributed Database Systems

OFRAR Optimal Fragment Reallocation And Replication

MST Minimum Spanning Tree

VFAR Vertical Fragmentation, Allocation and Replication

FVFAR Full Vertical Fragmentation, Allocation and

Replication

CRUD Create, Read, Update and Delete

FAR Fragmentation, Allocation And Replication

CCR Communication Cost Range

CDV Clustering Decision Value

DDBSM Distributed Database System Manager

ASUM Attribute Site Usage Matrix

ASM Attribute Similarity Matrix

AMM Attribute Manipulate Matrix

ARM Attribute Read Matrix

FMM Fragment Manipulate Matrix

FRM Fragment Read Matrix

FMCM Fragment Manipulate Cost Matrix

FRCM Fragment Read Cost Matrix

ALP Attribute Locality Precedence

MA_F Number Of Manipulate Accesses For Fragment F

LRA F Number Of Local Read Accesses For Fragment F

RRA F Number Of Remote Read Accesses For Fragment F

LMA F Number Of Local Manipulate Accesses For

Fragment F

RMA F Number Of Remote Manipulate Accesses For

Fragment F

CS_J Current Size Of Site J In Bytes

RS Replica Size In Bytes

FS Fragment Size In Bytes

SC_J Capacity Of Site J

TA_J Total Number Of Access To Site J

N Total Number Of Sites

AC_{FJ} Access Count For The Fragment F By The Site J

RAC_{FJ} Read Access Count For The Fragment F By The Site

J

RAC_F Read Access Count For Fragment F

MAC_F Manipulate Access Count For Fragment F

LIST OF PUBLICATIONS

- 1. Raouf, A. E. A., Badr, N. L., & Tolba, M. F. (2014, November). Dynamic distributed database over cloud environment. <u>Proceedings of International Conference on Advanced Machine Learning Technologies and Applications</u>, <u>Cairo, Egypt</u> (pp. 67-76). <u>Springer International Publishing</u>.
- 2. Raouf, A. E. A., Badr, N. L., & Tolba, M. F. (2015, December). An optimized scheme for vertical fragmentation, allocation and replication of a distributed database. *Proceedings of 2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)*, *Cairo, Egypt* (pp. 506-513). **IEEE**.
- 3. Raouf, A. E. A., Badr, N. L., & Tolba, M. F. (2016, October). An Enhanced Distributed Database Design Over the Cloud Environment. <u>Proceedings of International Conference on Advanced Intelligent Systems and Informatics</u>, <u>Cairo, Egypt</u> (pp. 290-298). <u>Springer International Publishing</u>.
- 4. Raouf, A. E. A., Badr, N. L., & Tolba, M. F. (2016, May). An Enhanced CRUD for Vertical Fragmentation Allocation and Replication Over the Cloud Environment. <u>Proceedings of the 10th International Conference on Informatics and Systems</u>, <u>Giza</u>, <u>Egypt</u> (pp. 146-152). <u>ACM</u>.
- 5. Raouf, A. E. A., Badr, N. L., & Tolba, M. F. (2017). Distributed Database System (DSS) Design Over a Cloud Environment. In *Multimedia Forensics and Security*, Volume 115 of the series Intelligent Systems Reference Library (pp. 97-116). Springer International Publishing.
- 6. Raouf, A. E. A., Badr, N. L., & Tolba, M. F. Dynamic Data Re-Allocation and Replication over a Cloud Environment. *Concurrency and Computation: Practice and Experience*. IF= 0.997, SJR= 0.744. (submitted).

Chapter 1

Introduction

1.1 Overview

Cloud computing has become the most essential technology for recent business organizations. It is a distributed environment that uses internet and central remote servers to maintain data and applications. In the case of distributed databases, data storage is located at different dedicated fixed remote servers [2].

These servers can communicate through a network and are managed by a distributed database management system (DDBMS). In addition, each server of the network has autonomous processing capability and also participates in the execution of at least one global database application, which requires accessing data residing at several different sites [3].

Business organizations need more fixed servers to store their large databases that consist of very large amounts of data, which is used by applications at different physical locations.

Cloud computing allows these business organizations to tap into virtual computing and storage resources over the internet and also benefit from utilities like reliability, costs, scalability, as well as pay only for what they use [2].

Fragmentation, replication and allocation are considered the most important design issues that lead to optimal solutions, particularly in a dynamic distributed environment. They also have a great impact on the Distributed Database Systems (DDBS) performance.

Fragmentation is the process of dividing a single database into two or more pieces known as database fragments, such that the combination of the pieces yields the original database without any loss of information [3][4].