

Effect of Silver Nano Particles-Reinforced Resin on Candidal Growth and Fracture Resistance of Complete Dentures (In Vitro Evaluation)

Thesis submitted to the Faculty of Dentistry, Ain Shams University, for partial fulfillment of the requirements for the Master Degree in Oral and Maxillofacial Prosthodontics

> By Nehal Yehia Ahmed Sharaf

B.D.S. - 2007 Faculty of Dentistry Ain Shams University

Faculty of Dentistry
Ain Shams University
2016

الأية ٥٦ .. سورة الأحزاب

Supervisors

Prof. Fatma El zahraa Awad Sayed

Professor of Oral and Maxillofacial Prosthodontics

Former Vice Dean for Students Affairs

Faculty of Dentistry

Ain Shams University

Dr. Mona Mohamed Ali Abo Elnagga

Lecturer of Oral and Maxillofacial Prosthodontics
Faculty of Dentistry
Ain Shams University

Dr. Safia Hamed Alabd

Lecturer of Medical Microbiology and Immunology
Faculty of Medicine
Ain Shams University

Dedication

Deepest thanks to

My beloved Family

Daughter

True Friends

Special thanks to

My beloved Husband

Acknowledgment

I would like to expresses my deepest gratitude to *Prof.*Fatma Elzahraa Awad Sayed, Professor of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, Ain Shams University, for her talented supervision, pleasant guidance, fruitful discussions, sincere and endless efforts, and constant support, which afforded the motivation to carry out this thesis.

With respect honor and true feelings, I thank *Dr Mona Mohamed Ali Abo Elnagga*, Lecturer of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, Ain Shams University for her constructive criticism, close and continuous supervision and endless effort to make this research fruitful and acceptable during all phases of this work. She afforded me the motivation to conduct this thesis.

I wish to express my deepest gratitude to *Dr. Safia Hamed Alabd*, Lecturer of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University for her supervision, continuous encouragement, and pleasant guidance throughout this thesis.

Finally, thanks to my family and colleagues for their continuous encouragement and support.

List of Contents

Titles	Page
INTRODUCTION	
REVIEW OF LITERATURE	
Edentulism	
Impact of Edentulism on Oral Health	4
Rehabilitation of Edentulous Patients	8
Maxillary Complete Denture	8
Maxillary Complete Denture Fracture	9
Reinforcement of acrylic dentures	12
Nanotechnology	
Nanomedicine	
Nanotechnology in dentistry	
Nanomaterials used in dentistry	
Silvernanoparticles	
Silver Nanoparticles in Prosthodontics	29
Evaluation of complete dentures resistance to	
fracture	
Universal Testing Machine	32
Studies Performed by the Universal Testing	
Machine	
Denture stomatitis	
Classification of denture stomatitis	
Causes of denture stomatitis Oral flora	
Dental biofilm	
Resident oral microflora	
Oral fungi	
Candida albicans	
Virulence Factors	
Host Reaction to Candida Albicans	
Factors Affecting Adherence of Candida Albican	
Classification of Oral Candidal Infection	48

Evaluation of denture stomatitis	. 49
Specimen Collection	. 49
Techniques for Candida Albicans Isolation	. 49
Tests for Candida Albicans identification	. 51
Candida Albicans Typing	. 53
Treatment of denture stomatitis	. 55
AIM OF THE STUDY	. 57
MATERIALS AND METHODS	. 58
RESULTS	. 74
DISCUSSION	. 78
CONCLUSION	. 94
RECOMMENDATION	. 95
SUMMARY	. 96
REFERENCES	. 98
ARABIC SUMMARY	., -

List of Tables

Table No.	Title	Page
1	Shapiro wilk test for difference, significance and	
	data normality for maximum load (N) at fracture	
	of unreinforced and reinforced dentures.	74
2	Means, Standard deviation and P-value for	
	maximum load at fractures of unreinforced and	
	silver oxide nano-particles reinforced dentures.	75
3	Mean values of log 10 of candida CFU count at	
	the beginning of the Incubation period and 24 hrs	
	after incubation for unreinforced and nano silver	
	oxide reinforced samples.	77

List of Figures

Fig.	Title	Page
1	Educational model	58
2	Waxed-up trial Denture	59
3	Waxed-up maxillary complete denture	59
4	Packing of acrylic resin dough	61
5	Unreinforced acrylic resin maxillary denture	61
6	Silver nanoparticles suspension	62
7	Digital Micrometer Pipette	63
8	Reinforced maxillary acrylic denture base	63
9	Duplicated acrylic cast	64
10	Stone key	64
11	Light body rubber base impression	65
12	Universal Testing Machine	66
13	Fractured dentures	66
14	Copper rectangular mould	67
15	Unreinforced and reinforced samples	69
16	Fresh agar plate	70
17	Sample inoculated with 20ml fungal suspension	70
18	The incubator	71
19	Diluted sample suspension	71
20	Diluted sample suspension cultured on sabourad's agar dish in the incubator	72
21	Candida colony forming units	72

Fig.	Title	Page
22	Bar graph for maximum load at fracture of unreinforced and nano silver reinforced dentures.	76
23	Bar graph for Candidal count for unreinforced and reinforced samples at the beginning of incubation and 24hrs after incubation	77

INTRODUCTION

Complete edentulism is a global problem that is highly prevalent among elderly patients. Edentulism affects oral and general health as well as the quality of life. (1) Providing edentulous patients with complete dentures is a common, well established mode of treatment. (2)

Documented arch discrepancy in tooth survival showed that maxillary arch exhibits earlier tooth loss compared to mandibular arch. Thus, prosthetic need for maxillary dentures is a common finding. (3)

Poly methyl methacrylate (PMMA) resin is commonly used for the fabrication of denture bases, owing to their good esthetics, simple handling and processing, relative ease of repair and moderate cost. However, their mechanical properties render them non-ideal as a denture base material. (4)

One of the complications of maxillary dentures especially single dentures is frequent fracture of the denture base. This may result due to heavy occlusal contact, impacts and micro porosities. (3)

About 50-70% of patients rehabilitated with maxillary dentures present with a pathogenic state known as denture

stomatitis. Denture stomatitis is a recurrent inflammatory process characterized by homogenous erythema and red focal areas, especially in the palatal mucosa. It is usually associated with Candida species, particularly Candida albicans. (5)

Placement of removable prosthesis in the oral cavity produces profound changes in the oral environment that may have an adverse effect on the integrity of the oral tissues. Mucosal reactions could result from mechanical irritation by the dentures, accumulation of microbial plaque, or occasionally a toxic or allergic reaction to the constituents of the denture base material. (3)

Recent advances in dental technology evolved several materials and techniques to overcome problems encountered with acrylic resin. Hence, attempts were carried out to enhance acrylic resin properties. These included materials that re-enforce denture bases and others that may reduce the tendency to post insertion microbial or fungal infection. (3)

Many approaches have been reported to reinforce polymethyl methacrylate denture bases through inclusion of several re-enforcing materials. These included carbon fibers, metal strengtheners, and polyethylene and glass fibers. Recently, the introduction of nanotechnology has encouraged the use of

nanoparticles to enhance the mechanical properties of acrylic resin denture bases. (6, 7)

Different types of nano materials have been developed. Silver nanoparticles are recently used in the medical field as they exhibit an antimicrobial action against Gram-positive and Gram-negative bacteria and fungi. They can also enhance mechanical properties of denture bases and increase their fracture resistance. (7)

Reviewing the dental literature revealed few studies on the use of nano silver particles as a reinforcing material for denture bases. Hence, this in vitro study was attempted to assess the effect of nano-silver reinforced acrylic bases on the fracture resistance of denture bases and on reducing the Candida growth on reinforced acrylic samples.

EDENTULISM

Edentulism is a debilitating and irreversible condition and is described as the final marker of disease burden affecting oral health. Although the prevalence of complete tooth loss has declined over the last decade, edentulism remains a major disease worldwide, especially among older adults. (8, 9)

Disease factors as caries or periodontal disease are not the sole cause for patient's edentulism; research has demonstrated that attitude, dental attendance and characteristics of health care system play an important role in edentulism. In addition, a significant relationship exists between the edentulous state and financial concerns. It is therefore reasonable to conclude that edentulism is due to a combination of cultural, financial and dental disease as well as to post dental treatment. (3)

Edentulism can directly lead to impairments including physical, psychological and social disabilities. (10)

Impact of edentulism on oral health

Impact of edentulism on bony structure

The close relationship between teeth and the alveolar process continues throughout life. ⁽⁹⁾ It was stated that bone remodels in relationship to the applied forces, where loss of mechanical stimulation due to disuse is followed by reduction of bone mass. Thus, bone needs stimulation to maintain its form and density. Teeth transmit compressive and tensile forces to the

surrounding bone. When a tooth is lost, lack of stimulation causes decrease in bone density resulting in loss in external width then height of bone volume. (11)

Bone loss is an ongoing process following tooth loss. It affects the mandible four times more than the maxilla. Edentulism was found to have a significant effect on residual ridge resorption (RRR) lead to reduction in the size of the denture bearing area. This reduction affects face height and thus facial appearance. (12)

Continuous reduction in the alveolar ridge is regarded as a major oral disease arising due to anatomical, metabolic, prosthetic and functional factors. (13) The potential causative factors include hereditary, systemic factors including oral and general health conditions and local factors including chewing habits, parafunctional habits, previous denture experience and denture loading. However, it is difficult to specify the most important factor affecting individual variations in RRR. (14)

It was reported that ridge resorption associated with edentulism is usually attributed to lack of mechanical stress, absence or presence of dentures and the number of years of denture use. Trauma to the denture-bearing tissues that may be caused by defective occlusion, poor denture fit and unfavorable loading may also enhance the rate of RRR in edentulous patients. (15)