Recent Trends in Treatment of Non Union of Fracture Neck of Femur In Adults

Essay

Submitted for Fulfillment of Master Degree

In Orthopaedic Surgery

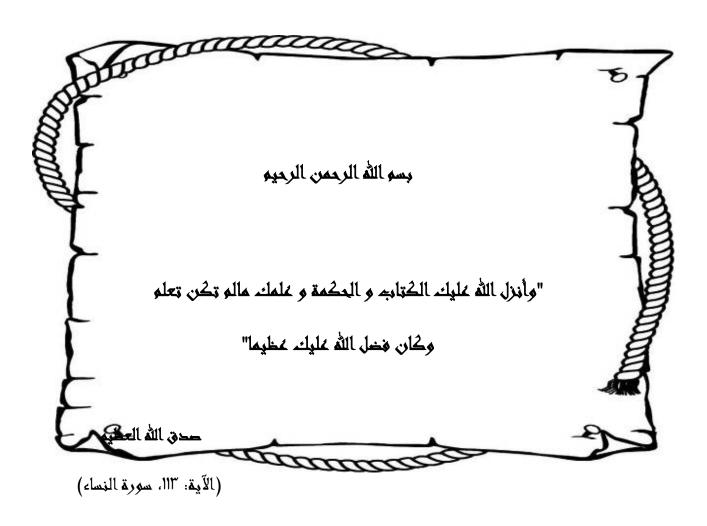
By

Mohammad Ahmad Alattar M.B.B.Ch

Under supervision of

Prof. Dr. Hazem A.El Azeem

Professor of Orthopaedic Surgery Faculty of Medicine, Cairo University


Prof. Dr. Ahmed Morrah

Professor of Orthopaedic Surgery Faculty of Medicine, Cairo University

Prof. Dr. Hesham Mesbah

Assistant Professor of Orthopaedic Surgery Faculty of Medicine, Cairo University

Cairo University 2009

Abstract

When Femoral neck fractures occur, the limited and unprotected blood supply to the femoral head, the intracapsular location, and severe trabecular atrophy of the femoral neck are factors that very frequently inhibit fracture healing

Fixation of femoral neck fractures is associated with a higher incidence of complications than any other fracture. The rates of nonunion and avascular necrosis with open reduction and internal fixation continue to be unacceptably high

As with fixation failure, the decision regarding how to proceed is based on consideration of the patient's age, function, medical history, and bone density. In a younger patient, if adequate bone remains in the femoral head, refixation with cancellous or muscle pedicle bone grafting is indicated. Many have advocated valgus osteotomy to improve the mechanical loading of the nonunion, with good result. If the physiologic neck-shaft axis remains intact, however, refixation with bone grafting but without osteotomy has similarly produced good radiographic and clinical results. When a short limb is involved, valgus osteotomy is the procedure of choice

Key Word: recent advances in management of nonunion of fracture neck femur in adults.

<u>Acknowledgment</u>

I thank Allah who gave me the ability to carry out this work.

It is pleasure to thank

Prof.Dr.Hazem A.El Azeem

who gave me a great support not only to complete this work but also to grow my experience in the field of fractures of proximal femur.

I wish to express my deepest thanks to

Prof.Dr.Ahmed Morrah

who gave me a lot of his time and effort throughout this work.

Finally I am so grateful to

Prof. Dr. Hesham Mesbah

who gave me support in the field of Orthopaedic Surgery, and I wish this work will be helpful to those searching for this subject.

List of Contents

Ti	Title I	
•	List of figures	i-iii
•	Introduction	1
•	Applied surgical anatomy	5
•	Fracture neck femur, mechanism of injury and methods of fixations	21
•	Management of non-union after fracture neck femur	36
•	Conclusion	58
•	References	61
•	Arabic Summary	

List of Figures

Figure No.	Comment	Page No.
Figure (1)	Anterior aspect of the right proximal femur	5
Figure (2)	Angle of femoral anteversion	7
Figure (3)	Diagram to show the curved outline of femoral neck	8
Figure (4)	Right hip joint (distended); posterior aspect	9
Figure (5)	Section through the hip joint. The synovial membrane is shown in blue.	9
Figure (6)	The right hip joint; anterior aspect.	10
Figure (7)	The right hip joint; Posterior aspect.	11
Figure (8)	Left hip joint, opened by the removal of the floor of the acetabulum from within the pelvis.	12
Figure (9)	Diagram the major trabecular groups of Singh in the proximal femur	13
Figure (10)	A transverse section at the level of the lesser trochanter	14
Figure (11)	Bisection of the femur through level of lesser trochanter to illustrate true nature of calcar femorale	14
Figure (12)	Drawing showing the blood supply to the proximal end of the femur	16
Figure (13)	Angiogram of thick coronal section of head of the femur.	17
Figure (14)	Photograph showing the perforation of the terminal branches into bone (right hip, posterosuperior view).	18

Figure (15) Fracture neck of the femur has been fixed with Hagle pins (A) and 3 Knowles pins, Anteroposterior view (B). Figure (16) Deyerle pins 24 Figure (17) Low angle screw fixation in fractures of the femoral neck 24 Figure (18) Von Bahr's method of fixation by two parallel screws 25 Figure (19) Antero-posterior radiograph of subcapital fracture of the femur treated by cross screw fixation Figure (20) appropriate screw placement for the three-screw technique of internal fixation Figure (21) proper placement of inferior and posterior screws for internal fixation of femoral neck cannot resist weight-bearing forces across the fracture and the head displaces until the inferior screw is buttressed by the medial cortex of the neck Figure (23) The Hansson hook pin technique for internal fixation of femoral neck fractures Figure (24) Smith Petersen nail plate fixation 30 Figure (25) Dynamic hip screw and the Pugh sliding nail 32 Figure (26) Fracture neck of the femur is fixed by the DHS plat 135 degree and 4 hole side plate Figure (27) Femoral neck fracture after fixation by D.H.S. and derotation screw 35			
Figure (17) Low angle screw fixation in fractures of the femoral neck 24 Figure (18) Von Bahr's method of fixation by two parallel screws 25 Figure (19) Antero-posterior radiograph of subcapital fracture of the femur treated by cross screw fixation 25 Figure (20) Cross-sectional view of the femoral neck showing appropriate screw placement for the three-screw technique of internal fixation 26 Figure (21) Anteroposterior (A) and lateral (B) views demonstrating proper placement of inferior and posterior screws for internal fixation of femoral neck fractures 27 (A) The weak cancellous bone of the femoral neck cannot resist weight-bearing forces across the fracture and the head displaces until the inferior screw is buttressed by the medial cortex of the neck 28 Figure (23) The Hansson hook pin technique for internal fixation of femoral neck fractures 30 Figure (24) Smith Petersen nail plate fixation 30 Figure (25) Dynamic hip screw and the Pugh sliding nail 32 Figure (26) Fracture neck of the femur is fixed by the DHS plat 135 degree and 4 hole side plate 34 Figure (27) Femoral neck fracture after fixation by D.H.S. and 35	Figure (15)		23
Figure (18) Von Bahr's method of fixation by two parallel screws 25 Figure (19) Antero-posterior radiograph of subcapital fracture of the femur treated by cross screw fixation Cross-sectional view of the femoral neck showing appropriate screw placement for the three-screw technique of internal fixation Figure (20) Anteroposterior (A) and lateral (B) views demonstrating proper placement of inferior and posterior screws for internal fixation of femoral neck fractures (A) The weak cancellous bone of the femoral neck cannot resist weight-bearing forces across the fracture and the head displaces until the inferior screw is buttressed by the medial cortex of the neck Figure (23) The Hansson hook pin technique for internal fixation of femoral neck fractures 30 Figure (24) Smith Petersen nail plate fixation 30 Figure (25) Dynamic hip screw and the Pugh sliding nail 32 Figure (26) Fracture neck of the femur is fixed by the DHS plat 135 degree and 4 hole side plate Figure (27) Femoral neck fracture after fixation by D.H.S. and	Figure (16)	Deyerle pins	24
Figure (19) Antero-posterior radiograph of subcapital fracture of the femur treated by cross screw fixation Cross-sectional view of the femoral neck showing appropriate screw placement for the three-screw technique of internal fixation Anteroposterior (A) and lateral (B) views demonstrating proper placement of inferior and posterior screws for internal fixation of femoral neck fractures (A) The weak cancellous bone of the femoral neck cannot resist weight-bearing forces across the fracture and the head displaces until the inferior screw is buttressed by the medial cortex of the neck Figure (23) The Hansson hook pin technique for internal fixation of femoral neck fractures 30 Figure (24) Smith Petersen nail plate fixation 30 Figure (25) Dynamic hip screw and the Pugh sliding nail 32 Figure (26) Fracture neck of the femur is fixed by the DHS plat 135 degree and 4 hole side plate Figure (27) Femoral neck fracture after fixation by D.H.S. and	Figure (17)	Low angle screw fixation in fractures of the femoral neck	24
Figure (20) Figure (20) Cross-sectional view of the femoral neck showing appropriate screw placement for the three-screw technique of internal fixation Anteroposterior (A) and lateral (B) views demonstrating proper placement of inferior and posterior screws for internal fixation of femoral neck fractures (A) The weak cancellous bone of the femoral neck cannot resist weight-bearing forces across the fracture and the head displaces until the inferior screw is buttressed by the medial cortex of the neck Figure (23) The Hansson hook pin technique for internal fixation of femoral neck fractures 30 Figure (24) Smith Petersen nail plate fixation Figure (25) Dynamic hip screw and the Pugh sliding nail Fracture neck of the femur is fixed by the DHS plat 135 degree and 4 hole side plate Figure (27) Femoral neck fracture after fixation by D.H.S. and	Figure (18)	Von Bahr's method of fixation by two parallel screws	25
Figure (20) appropriate screw placement for the three-screw technique of internal fixation Anteroposterior (A) and lateral (B) views demonstrating proper placement of inferior and posterior screws for internal fixation of femoral neck fractures (A) The weak cancellous bone of the femoral neck cannot resist weight-bearing forces across the fracture and the head displaces until the inferior screw is buttressed by the medial cortex of the neck Figure (23) The Hansson hook pin technique for internal fixation of femoral neck fractures Figure (24) Smith Petersen nail plate fixation 30 Figure (25) Dynamic hip screw and the Pugh sliding nail 32 Figure (26) Fracture neck of the femur is fixed by the DHS plat 135 degree and 4 hole side plate Figure (27) Femoral neck fracture after fixation by D.H.S. and	Figure (19)		25
Figure (21) proper placement of inferior and posterior screws for internal fixation of femoral neck fractures (A) The weak cancellous bone of the femoral neck cannot resist weight-bearing forces across the fracture and the head displaces until the inferior screw is buttressed by the medial cortex of the neck Figure (23) The Hansson hook pin technique for internal fixation of femoral neck fractures Figure (24) Smith Petersen nail plate fixation Figure (25) Dynamic hip screw and the Pugh sliding nail Figure (26) Fracture neck of the femur is fixed by the DHS plat 135 degree and 4 hole side plate Figure (27) Femoral neck fracture after fixation by D.H.S. and	Figure (20)	appropriate screw placement for the three-screw	26
Figure (22) resist weight-bearing forces across the fracture and the head displaces until the inferior screw is buttressed by the medial cortex of the neck Figure (23) The Hansson hook pin technique for internal fixation of femoral neck fractures 30 Figure (24) Smith Petersen nail plate fixation 30 Figure (25) Dynamic hip screw and the Pugh sliding nail 32 Figure (26) Fracture neck of the femur is fixed by the DHS plat 135 degree and 4 hole side plate Figure (27) Femoral neck fracture after fixation by D.H.S. and	Figure (21)	proper placement of inferior and posterior screws for	27
Figure (24) Smith Petersen nail plate fixation Figure (25) Dynamic hip screw and the Pugh sliding nail Figure (26) Fracture neck of the femur is fixed by the DHS plat 135 degree and 4 hole side plate Figure (27) Femoral neck fracture after fixation by D.H.S. and	Figure (22)	resist weight-bearing forces across the fracture and the head displaces until the inferior screw is buttressed by the	28
Figure (25) Dynamic hip screw and the Pugh sliding nail 32 Figure (26) Fracture neck of the femur is fixed by the DHS plat 135 degree and 4 hole side plate 34 Figure (27) Femoral neck fracture after fixation by D.H.S. and 35	Figure (23)	-	30
Figure (26) Fracture neck of the femur is fixed by the DHS plat 135 degree and 4 hole side plate Figure (27) Femoral neck fracture after fixation by D.H.S. and	Figure (24)	Smith Petersen nail plate fixation	30
Figure (26) degree and 4 hole side plate Figure (27) Femoral neck fracture after fixation by D.H.S. and 35	Figure (25)	Dynamic hip screw and the Pugh sliding nail	32
remoral neck fracture after fixation by D.H.S. and	Figure (26)	-	34
	Figure (27)		35

Figure (28)	Anteroposterior radiograph demonstrating femoral neck nonunion in a 35-year-old woman.	37
Figure (29)	Non-union 6 months after minimally invasive screw fixation of a displaced intracapsular hip fracture.	38
Figure (30)	Magnetic resonance imaging study of a minimally displaced fracture of the right hip.	39
Figure (31)	a 47-year-old-man with femoral neck fracture	45
Figure (32)	Peroperative fluoroscopy demonstrating a 50° valgus corrective osteotomy according to Pauwels	46
Figure (33)	Intertrochanteric valgus osteotomy in a 47-year-old-man with femoral neck fracture	46
Figure (34)	Postoperative result at 6 months with union of the fracture and the osteotomy site.	47
Figure (35)	A: Posterior defect in neck B: The graft fixed by two screws	49
Figure (36)	Anteroposterior roentgenogram three years after surgery showing osseous union.	49
Figure (37)	The fibular graft with the peroneal vessels is harvested from the ipsilateral calf for insertion into the core in the femoral neck and head.	55
Figure (38)	The donor fibula, with peroneal artery and veins, is harvested from the ipsilateral leg.	55
Figure (39)	The fibular graft is inserted into the core tract and stabilized with a Kirschner wire	57

Introduction and Aim of the Work

Introduction

Intracapsular fractures of the hip do occur in younger patients, usually as a result of high-energy trauma ⁽¹⁾.

When Femoral neck fractures occur, the limited and unprotected blood supply to the femoral head, the intracapsular location, and severe trabecular atrophy of the femoral neck are factors that very frequently inhibit fracture healing or lead to avascular necrosis and late segmental collapse of the head ⁽²⁾.

Fixation of femoral neck fractures is associated with a higher incidence of complications than any other fracture. The rates of nonunion and avascular necrosis with open reduction and internal fixation continue to be unacceptably high ⁽³⁾.

The problem of nonunion is rare after a nondisplaced or impacted fracture. The incidence of nonunion after a displaced fracture is in the range of 50% to 60% with traction or cast treatment and 4% to 33% after internal fixation. Several studies have shown that nonunion is a rare problem in patients with normal bone density and in who stable fixation is achieved and that it is most closely associated with increasing age and fracture displacement. In the vast majority of cases, femoral neck nonunion is associated with moderate to severe groin or proximal thigh pain and related limping, typically a Trendelenburg gait. Because of these symptoms, most patients will require a reconstructive procedure (4)

The diagnosis of nonunion is initially suspected on a clinical basis. The symptoms of groin or buttock pain, pain on hip extension, and pain with weight bearing all suggest this complication. In comparison to avascular necrosis, the symptoms of nonunion occur earlier and are more severe ⁽⁵⁾.

Femoral neck fractures should unite by 6 months. If there is no evidence of healing, or the patient continued to have pain at 3 to 6 months after surgery, then a delayed (3 months) or nonunion (6 months) should be contemplated. When trying to differentiate a nonunion versus avascular necrosis in a patient, the source of the pain must be determined. The diagnostic procedure of choice would be MRI; however, it can be difficult to get a reliable picture with stainless steel or even titanium present in the femoral head. Some newer CT scans and MRI scan dampen the effect of the screws; however, even with titanium screws, it can be difficult to get a sufficiently clear picture of the femoral head to make a firm diagnosis of avascular necrosis. A bone scan has an 85% to 90% sensitivity for avascular necrosis, so it is a good investigation to distinguish avascular necrosis from nonunion. A CT scan is extremely helpful to diagnose a femoral neck nonunion. It is important to note that avascular necrosis and nonunion are independent events, because avascular necrosis is based on the vascular supply within the femoral head, whereas nonunion is based on the healing process (6).

As with fixation failure, the decision regarding how to proceed is based on consideration of the patient's age, function, medical history, and bone density. In a younger patient, if adequate bone remains in the

Introduction and Aim of the Work

femoral head, refixation with cancellous or muscle pedicle bone grafting is indicated. Many have advocated valgus osteotomy to improve the mechanical loading of the nonunion, with good result. If the physiologic neck-shaft axis remains intact, however, refixation with bone grafting but without osteotomy has similarly produced good radiographic and clinical results. When a short limb is involved, valgus osteotomy is the procedure of choice ⁽⁷⁾.

In the case of an older, osteoporotic patient or in a situation in which instability has produced loss of bone in the femoral head, hip arthroplasty is the procedure of choice. Good to excellent functional results in this setting have been reported. Again, prevention is the best method of treatment. Conservative treatment of undisplaced fractures should be avoided ⁽⁸⁾.

Aim of the Work

The aim of this essay is to know recent advances in management of nonunion of fracture neck femur in adults.

Applied Surgical Anatomy