

Three-dimensional power Doppler ultrasound scanning for the prediction of endometrial cancer in women with postmenopausal bleeding and thickened endometrium

Thesis

Submitted for partial fulfillment of the master degree In Obstetrics and gynecology

By:

Amgad Farahat Abd Elkader Salim

Resident of obstetrics and gynecology Ghamra Military Hospital M.B.B.Ch

Supervised by

Prof. Hatem Hussein Elgamal

Professor of Obstetrics and Gynaecology Faculty of Medicine, Ain Shams University

Prof. Magdy Hassan Kolib

Professor of Obstetrics and Gynaecology Faculty of Medicine, Ain Shams University

Dr. Ahmed Elsayed Hassan Elbohoty

Lecturer of Obstetrics and Gynecology Faculty of Medicine, Ain shams University

> Faculty of Medicine Ain Shams University 2014

سورة البقرة الآية: ٣٢

Acknowledgement

First of all my deepest thank to **Allah** for enabling me to do right things.

I am greatly honored to express my deep respect and gratitude to **Prof. Hatem Elgamal**, Professor of Obstetrics and Gynaecology, Faculty of medicine, Ain Shams University, for his faithful supervision, help and encouragement in initiating and completing this work.

I am very much grateful to **Prof. Magdy Hassan Kolib**, Professor of Obstetrics and Gynaecology, Faculty of medicine, Ain Shams University, for his valuable advice that helped me to finish this work.

I am very much obliged to **Dr. Ahmed Elsayed Hassan Elbohoty**, Lecturer of Obstetrics and Gynecology,
Faculty of Medicine, Ain Shams University.

I owe much to **Dr. Amr Helmy Yehia** Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his continues help, valuable suggestions and final revision of the manuscript.

Amgad Farahat Abd Elkader Salim

Contents

List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction and Aim of the Work	1
Review of Literature	4
Chapter (1) Postmenopausal bleeding	5
Chapter (2): Ultrasonography	19
Patients and Methods	45
Results	52
Discussion	65
Summary	71
Conclusion	74
References	75
Arabic Summary	

List of Abbreviations

EMP : Endometrial Polyp

BMI : Body mass index

CT : Computerized tomography

MRI : Magnetic resonant imaging

D&C : Dilatation and curettage

DH : Diagnostic hysteroscopy

PMB : Postmenopausal bleeding

TVS : Transvaginal ultrasonography

US : Ultrasound

IV : Intravenous

VOCAL: Virtual Organ Computer-aided Analysis

3D : Three dimensional

2D : Two dimensional

3D-PDA: Three dimensional power Doppler

angiography

EMP : Endometrial Polyp

WHO: World health organization

DH : Diagnostic hysteroscopy

VI : Vascularization index

FI : Flow index

VFI : Vascularization flow index

DM : Diabetes mellitus

AUC: Area under the curve

AE : Endometrial atrophy

EP : Endometrial polyp

EH : Endometrial hyperplasia

EC: Endometrial carcinoma

ROC: Receiver-operator characteristic

VIs : Vascularization indices

SIS : Saline infusion sonography

GIT : Gastrointestinal tract

ROC: Receiver-operator characteristic

List of Table

Table	Title	Page
1	Differential Diagnosis of	6
	postmenopausal bleeding	
2	Patients demographic data	53
3	Comparison of the characteristics of	55
	patients with benign or malignant lesions	
4	Comparison of ultrasound parameters in	56
	patients with benign or malignant lesions	
5	Comparison of ultrasound parameters	58
	according to the histopathologic type	
6	Summary of the areas under the	63
	receiver-operator characteristic (ROC)	
	curves (AUCs) for prediction of	
	endometrial carcinoma using	
	endometrial thickness, endometrial	
	volume, VI, FI, or VFI	
7	Comparison between previous study and	70
	our study	

List of Figures

Fig.	Title	Page
1	Microscopic picture of senile atrophic endometrium	5
2	Microscopic picture of an EMP	8
3	Microscopic picture of adenomyomatous polyp	8
4	Microscopic picture of simple hyperplasia	11
5	Microscopic picture of complex hyperplasia	11
6	Five-year survival depending on stage and type of cancer	12
7	Microscopic picture of endometrioid adenocarcinoma	13
8	Microscopic picture of endometrial adenoacanthoma	13
9	Microscopic picture of uterine papillary serous carcinoma	14
10	Ultrasound of endometrial polyp	22
11	Ultrasound of endometrial polyp	22
12	Ultrasound of intramural fibroids	24
13	Ultrasound of submucous fibroid.	25
14	Ultrasound of subserous fibroid	25
15	Ultrasound of adenomyosis	26
16	Ultrasound of adenomyosis	26
17	Ultrasound of endometrial hyperplasia	27
18	Ultrasound of endometrial hyperplasia	28
19	Ultrasound of endometrial carcinoma.	29
20	Ultrasound of endometrial carcinoma.	29
21	Ultrasound of endometrial carcinoma	30
22	Ultrasound of atrophic endometrium	31

List of Figures (Cont.)

Fig.	Title	Page
23	Calculation using VOCALTM software	39
	of endometrial volume (a) and power	
	Doppler indices (vascularization index	
	(VI), flow index (FI) and vascularization	
	flow index (VFI)) in the endometrium	
	(b)	
24	Consort flow chart	54
25	Mean Doppler indices in patients with	57
	benign or malignant lesion	
26	Mean endometrial thickness associated	59
	with the various histopathologic types.	
27	Mean endometrial volume associated	60
	with the various histopathologic types.	
28	Mean Doppler indices associated with	61
	the various histopathologic type	
29	A composite graph showing the areas	64
	under the receiver-operator characteristic	
	(ROC) curves (AUCs) for prediction of	
	endometrial carcinoma using	
	endometrial thickness, endometrial	
	volume, VI, FI, or VFI.	

Introduction

Postmenopausal bleeding (PMB) accounts for five per cent of office gynaecology presentations (Anon., 2007). Its definition is self-explanatory, as any bleeding from the genital tract occurring in the postmenopausal period, arising after 12 months of amenorrhoea in a woman of menopausal age (Goodman, 2014). It is known that about 90-95% of postmenopausal women with endometrial cancer report a bleeding experience whereas about symptomatic postmenopausal women reveal an intrauterine malignancy. So, a postmenopausal vaginal bleeding is a sign that should not be underestimated (Giannella et al., 2014). A good clinical practice provides, as first diagnostic step, a transvaginal ultrasound in order to discriminate a woman at high or low risk of malignancy. Usually, an endometrial thickness \leq 4mm is a cutoff value for which a conservative management should be adopted. Indeed, in the latter case the probability of having an endometrial cancer drops from 10% to 0.8 % (Ali et al., 2014). An endometrial biopsy is considered the gold standard for evaluation of PMB. Endometrial biopsy can be obtained with an endometrial pipelle in the outpatient setting, or by hysteroscopy and curettage (with or without dilatation) in either the outpatient or inpatient setting.

Sampling of the endometrium may miss pathology, as often less than 50 per cent of the endometrium is sampled. Risks involved in this procedure include infection, bleeding, uterine perforation and insufficient sampling (Feldman., 2014). Sonohysterography appears to accurately evaluate endometrial cavity and can be successfully performed in more than 85% of postmenopausal women in an office setting. Saline infusion sonography seems superior to TVUS in defining intrauterine lesions in women with postmenopausal bleeding and endometrial thickness greater than 5 mm, particularly for the delineation of endometrial polyps, for which it seems as accurate as hysteroscopy but There is no current evidence suggesting that saline infusion sonography (SIS) enhances the diagnosis of malignancy (Munro., 2014). Three-dimensional (3D) ultrasonography and power Doppler angiography (PDA) is a novel sonographic diagnostic modality. This technology permits acquisition of the volume of the endometrium and assessment of its vasculature using 3D power Doppler mapping. Using Virtual Organ Computer-aided Analysis (VOCALTM) software, three vascularity indices can be obtained automatically: the vascularization index (VI), the flow index (FI), and the vascularization flow index (VFI). This method has been proven to be highly reproducible for analyzing the volume of the endometrium and 3-dimensional

Introduction and Aim of The Work

power Doppler indices of patients with malignancy of the endometrium (*Hanafi et al.*, 2014). Magnetic resonance imaging (MRI) is a powerful noninvasive but costly technique with a demonstrated, promising potential for visualization of uterine myoma. However, data on MRI visualization of endometrial polyps are scarce. MRI has limitations for the evaluation of intrauterine lesions because they need high medical expenses due to the use of expensive equipment (*Ahmad et al.*, 2014).

Aim of the Work

To evaluate the role of 3-dimensional power Doppler angiography (3D-PDA) to discriminate between benign and malignant endometrial disease in women with postmenopausal bleeding and thickened endometrium.