### Depression in Patients with Chronic Low Back Pain

#### **Thesis**

Submitted for partial fulfillment of requirement for the Master Degree in Physical Medicine, Rheumatology, and Rehabilitation

### By Ali Fadhel Al-Sheekh

M.B.,CH,B. Faculty of Medicine – Al-Mosul University

**Under Supervision of** 

# Prof. Dr. Nagwa Mohamed Nassar

Professor of Physical Medicine, Rheumatology, and Rehabilitation Faculty of Medicine – Ain Shams University

# **Prof. Dr. Naglaa Yousef Assaf**

Professor of Physical Medicine, Rheumatology, and Rehabilitation Faculty of Medicine – Ain Shams University

# Dr. Dina Abou Bakr Farrag

Lecturer of Physical Medicine, Rheumatology, and Rehabilitation Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2018

par mo



سورة البقرة الأية: ٣٢

# Acknowledgments

00

First and forever, thanks to **Allah**, Almighty for giving me the strength and faith to complete my thesis and for everything else.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Nagwa Mohamed Nassar**, Professor of Physical Medicine, Rheumatology, and Rehabilitation, Faculty of Medicine, Ain Shams University, who initiated and designed the subject of this thesis, for his kindness, over available, fatherly attitude and untiring supervision, helpful criticism and support during the whole work.

My extreme thanks and gratefulness to **Prof. Dr. Naglaa Yousef Assaf**, Professor of Physical Medicine, Rheumatology, and Rehabilitation, Faculty of Medicine, Ain Shams University I'm much grateful for her patience and strict supervision and revision of practical part of this work. Her valuable advice helped me a lot to pass many difficulties.

I'm very grateful to **Dr. Dina Abou Bakr Farrag**, Lecturer of Physical Medicine, Rheumatology, and Rehabilitation, Faculty of Medicine, Ain Shams University, as her ideas had created and brought this work to light; for her great effort, guidance, valuable advice and continuous encouragement all through his work.

I would like also to thank **Dr. Dina Ibrahim Hassan**, Consultant of Psychiatry, Ain Shams University, for her cooperation and help during the whole work.

Last but not least, I would like to thank all members of my family, specially my **Parents** and my **Wife**, for their care and support.

Ali Fadhel Al-Sheekh

### **List of Contents**

| Subject                             | Page No. |
|-------------------------------------|----------|
| List of Abbreviations               | i        |
| List of Tables                      | iv       |
| List of Figures                     | v        |
| Introduction                        | 1        |
| Aim of the Work                     | 4        |
| Review of Literature                |          |
| Low Back Pain                       | 5        |
| Depression                          | 59       |
| Depression in chronic Low Back Pain | 81       |
| Patients and Methods                | 95       |
| Results                             | 105      |
| Discussion                          | 124      |
| Summary                             | 135      |
| Conclusion                          | 137      |
| Recommendations                     | 141      |
| References                          | 142      |
| Appendices                          |          |
| Arabic Summary                      |          |

### **List of Abbreviations**

Abbrev. Full-term

**AHA** : American Heart Association

**AP** : Anterior-posterior

**APA** : American Psychiatric Association

**BDI** : Beck depression inventory

**BDNF**: brain-derived neurotrophic factor

**BMI** : Body mass index

**BUN** : Blood Urea Nitrogen

**CBC** : complete blood count

**CDI** : Children's Depression Inventory

**CES-D**: Center for Epidemiologic Studies-Depression

**CKD** : Chronic kidney disease

**Cm** : Centimeters

**COX** : Cyclooxygenase

**CT** : Computed tomography

**CVS** : Cardiovascular system

**DA** : Dopamine

**DSM**: Diagnostics and Statistical Manual of Mental Disorders

**EMG** : Electromyography

**EEG** : Electroencephalogram

**ECG** : Electrocardiogram

**ESIs** : Epidural steroid injections

**FST** : Femoral stretch test

**GIT** : Gastrointestinal tract

**HIV** : Human immune virus

**ICD** : International Classification of Diseases

**IPT**: Interpersonal theory

**LBP** : Low back pain

**MDD** : Major depressive disorder

**MDE** : Major depressive episode

MRI : Magnetic resonance imaging

NCS : Nerve conduction studies

**NE** : Norepinephrine

NRT : Neuro-reflex therapy

**NSAIDs** : Non-steroidal anti-inflammatory drugs

**ODS** : Oswestry disability index

**PENS** : Percutaneous electrical nerve stimulation

**PGs**: Proteoglycans

**PD**: Psychodynamic

**PHQ** : Patient Health Questionnaire

**PMM** : Psoas major muscle

**PMM** : Psoas major muscle

**PGs**: Proteoglycans

**RCTs** : Randomized controlled trials

**ROM** : Range of motion

**SAD** : Seasonal affective disorder

**SLR** : Straight leg raising

**SPECT** : Single photon emission computed tomography

**SPECT**: Single photon emission computed tomography

**SSRIs** : Serotonin-specific reuptake inhibitors

**SSRIs** : Selective serotonin reuptake inhibitors

**SNRIs** : Serotonin/norepinephrine reuptake inhibitors

**SPSS** : Statistical package for social sciences

**SCS** : Spinal cord stimulation

TCAs : Tricyclic antidepressants

**TENS**: Transcutaneous electric nerve stimulation

**TSH**: Thyroid-Stimulating Hormone

**US** : Ultrasound

**USPSTF**: U.S. Preventive Services Task Force

**VAS** : Visual analogue scale

VTA : Ventral tegmental area

**WHO**: World Health Organization

### **List of Tables**

| Table No           | . Title                                                                                       | Page No.   |
|--------------------|-----------------------------------------------------------------------------------------------|------------|
| <b>Table (1):</b>  | Descriptive data of chronic low ba patients                                                   |            |
| <b>Table (2):</b>  | The clinical finding of the study spatients                                                   |            |
| <b>Table (3):</b>  | Lumbosacral radiological finding study sampled patients                                       |            |
| <b>Table (4):</b>  | The mean results of VAS, ODI and the chronic low back pain patients (n                        |            |
| <b>Table (5):</b>  | Results of Oswestry Disability In chronic low back pain patients                              |            |
| <b>Table (6):</b>  | Results of Beck's Depression Inver-<br>chronic low back pain patients                         | •          |
| <b>Table (7):</b>  | Correlation between disease duration BMI, VAS and each of ODI and patients with low back pain | BDI in     |
| <b>Table (8):</b>  | The effect of degree of disability leads on the degree of depression using B                  | •          |
| <b>Table (9):</b>  | The relationship between p<br>characteristics and Oswestry Disability                         |            |
| <b>Table (10):</b> | The relationship between BMI can and Oswestry Disability Index                                | 0          |
| <b>Table (11):</b> | The relationship between occupation Oswestry Disability Index                                 |            |
| <b>Table (12):</b> | The relationship between physical strumbosacral spine and Oswestry Index.                     | Disability |

# **List of Figures**

| Figure No           | . Title                                                                                | Page                                    | No. |
|---------------------|----------------------------------------------------------------------------------------|-----------------------------------------|-----|
| Figure (1):         | Movement of the dura mater and roots in relation to the spinal canal flexion           | during                                  |     |
| Figure (2):         | The location and innervation of a sinuvertebral nerve in the lumbar spi                | _                                       |     |
| Figure (3):         | The nociceptive pathways from periphery will conduct to the brain two synaptic relays. | n after                                 |     |
| Figure (4):         | Some chemicals released by tissue d that stimulates nociceptors                        |                                         |     |
| Figure (5):         | The gate control theory of Pa excitatory synapse; – inhibitory syna                    |                                         |     |
| Figure (6):         | Ascending (solid lines) and desc pain pathways.                                        |                                         |     |
| Figure (7):         | Plain X-ray Lateral view lumbar showing Spondylolytic Spondylolistl                    | -                                       |     |
| Figure (8):         | MRI side view of the lumbar spine normal discs, spinal canal, and nerve                |                                         | 44  |
| Figure (9):         | Chronic pain cycle                                                                     | • • • • • • • • • • • • • • • • • • • • | 90  |
| <b>Figure</b> (10): | Levels of education of the study sa patients                                           |                                         |     |
| Figure (11):        | The occupation of the study sa patients                                                |                                         |     |
| <b>Figure (12):</b> | The course of chronic low back patients                                                |                                         |     |

| <b>Figure (13):</b> | The past medical history of the study sampled patients                                                                           | 108 |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>Figure</b> (14): | The distribution of the study sampled patients according to VAS for pain intensity [n=50].                                       | 112 |
| <b>Figure (15):</b> | The distribution of the study sampled patients according to Oswestry Disability Index [n=50].                                    | 113 |
| <b>Figure (16):</b> | The distribution of the study sampled patients according to Beck's Depression Inventory [n=50].                                  | 114 |
| <b>Figure</b> (17): | The correlation between ODI and VAS in the study sampled patients.                                                               | 119 |
| <b>Figure</b> (18): | The correlation between VAS and BDI in the study sampled patients.                                                               | 119 |
| <b>Figure (19):</b> | Scatter diagram showing positive significant linear relation between degree of disability by ODI and degree of depression by BDI | 120 |

### Introduction

ow Back Pain (LBP) is one of the most common medical problems involving any age worldwide. It is a leading cause of disability, interferes with quality of life, work performance and is the most common reason for medical consultations (*Tsang et al.*, 2017).

There are 2 types of low back pain, specific and non-specific. Specific low back pain is defined as that caused by a specific pathophysiological mechanism, such as disc-prolapse, infection, inflammatory arthropathy, tumors, osteoporosis or fracture. Non-specific LBP is tension, soreness and/or stiffness in lower back region for which it isn't possible to identify a specific cause of the pain.

Most people who develop LBP that comes on suddenly have acute LBP (*Jiman and Etukumana*, 2017). They improve quickly. Once the pain has eased or gone, recurrence can occur classified as chronic (persistent) if last for longer than six weeks (*Kenny*, 2013). The incidence of chronic low back pain (CLBP) has been reported to be 9% to 21% in the general population and has been increasing steadily (*Megan Sions et al.*, 2017). As a result, disability associated with CLBP has been studied extensively, and psycho-social factors that may contribute to pain and disabilities have also been studied systematically (*Guclu et al.*, 2012).

Chronic low back pain (CLBP) and Depression are two common problems that present in health facilities. Low back pain is a physical condition which usually presents with physical symptoms while Depression is a psychiatric condition (*Namgwa et al.*, 2016). The physical and psychological distress of chronic pain interacting with individual and social vulnerability may precipitate an episode of major depression (*Pinheiro et al.*, 2015).

Pain and Depression share biological pathways and nerve transmitters with treatment implications for both conditions. Assessment and treatment of CLBP and depression simultaneously is necessary for better outcomes (*Søndergård et al.*, 2017). The explanation for this is that pessimistic thoughts activate some specific areas in the brain which cause the person to give more attention to the pain and increase the amplitude of pain felt (*Hülsebusch et al.*, 2016). Studies from the literature have shown depression to be highly prevalent among persons with CLBP (*Robertson et al.*, 2017).

Major depression is the most common mental illness associated with chronic pain. Other mental illnesses that have been described in patients with chronic pain include: Generalized anxiety disorder, posttraumatic stress disorder, and substance misuse (*Stubbs et al.*, 2017).

Depression or CLBP may become the causative factor for the other and even exacerbate each other (*Namgwa et al.*, 2016).

Patients suffering from depression often present with a complex set of overlapping symptoms of emotional and physical complaints like unexplained pain (*Namgwa et al.*, 2016). Long standing CLBP would result into many routine changes and may adversely affect the individual's state of mind (*Hsu et al.*, 2017).

Some researchers have studied the reverse connection, that is, patients with depression developing CLBP. One of such studies revealed that in adult males, 42% of patients who suffered primarily from depression developed CLBP, while 58% of patients had a reverse cycle of CLBP leading to depression (*Robertson et al.*, 2017).

### **Aim of the Work**

The aim of this study is to detect if there is association between depression and functional disability in chronic low back pain patients.

### **Low Back Pain**

#### **Introduction:**

ow back pain (LBP) is pain, muscle tension, or stiffness localized below the costal margin and above the inferior gluteal folds, with or without sciatica, and is defined as chronic when it persists for 12 weeks or more. (*Roger*, 2011).

Low back pain is the most frequent self-reported type of musculoskeletal pain. It is often recurrent, and has important socio-economic consequences. Estimates of the prevalence of LBP are as high as 33% for point prevalence, 65% for 1-year prevalence, and 84% for lifetime prevalence (*Trompeter and Platen*, 2017). It is an important health problem in both developed and developing countries (*Quintana et al.*, 2016). There is no convincing evidence that age affects the prevalence of back pain (*Savigny et al.*, 2009).

LBP is not a disease but a symptom which can be localized between the twelfth rib and the inferior gluteal folds (low back), with or without leg pain from various causes (*Stefane et al.*, 2013).

#### **BIOMECHANICS OF LUMBAR SPINE:**

The spine has three defined mechanical functions; to support the trunk, to protect the spinal cord and nerve roots; and to allow motion of the trunk and head. The first two of these and the third can be viewed as conflicting and are probably the