

Faculty of Engineering Department of Architecture

Building Information Modeling (BIM) Technology Implementation in Lean Architecture Through Managing Human Resources

A Thesis Submitted to the Faculty of Engineering in Partial Fulfillment of the Requirements of

The Master of Science Degree in Architecture

Prepared by:

Dawlat Mahmoud El Taher El Mossalamy

B.Sc. Architecture Ain Shams University, 2008

Under supervision of:

Prof. Dr. Khaled Dewidar

Professor of Architectural Design Architecture Department Faculty of Engineering Ain Shams University

Prof. Dr. Akram Farouk

Professor of Architectural Design Architecture Department Faculty of Engineering Ain Shams University

> Cairo, Egypt 2014

Ain Shams University
Faculty of Engineering
Department of Architecture

Name: Dawlat Mahmoud El Taher El Mossalamy

<u>Thesis Title:</u> Building Information Modeling (BIM) Technology Implementation in Lean Architecture through Managing human Resources

Degree: Master of Science in Architecture.

Examining Committee:

Associate Prof. Dr. Ayman Ahmed Ezzat Sig:

Associate Professor of Architecture – Faculty of Engineering – British University in Cairo (BUE)

Prof. Dr. Hossam El Brombaly Sig:

Professor of Architecture – Faculty of Engineering – Ain Shams University

Prof. Dr. Akram Farouk Mohamed Sig:

Professor of Architecture – Faculty of Engineering – Ain Shams University

Prof. Dr. Khaled Mohamed Dewidar Sig:

Professor of Architecture – Faculty of Engineering – Ain Shams University

Post Graduate studies

Approval Approval stamp / / 2014

Faculty Council Approval / / 2014

University Council Approval / / 2014

Statement

This thesis is submitted to Ain Shams University for the degree of Master in Architecture.

The work included in this thesis was accomplished by the author at the Department of Architecture, Faculty of Engineering, Ain shams University from 2010 to 2014.

No part of this thesis has been submitted for a degree or a qualification at any other university or institute.

Name: Dawlat Mahmoud El Taher El Mossalamy

Faculty: Faculty of Engineering – Ain Shams University

Signature:

Date: / /

Acknowledgement

All praises due to God, the most gracious. I thank God for guiding me through my way in this thesis and for giving me the chance to participate in the academic and professional career and complete such an honorable degree.

To my parents who supported me on every step on my way and whom without I would never have been able to finish my thesis.

I would like to express my deepest gratitude to my supervisors Prof. Dr. Akram Farouk and Prof. Dr. Khaled Dewidar for their excellent guidance, caring and patience. A special thanks goes to Prof. Dr. Hossam El Brombaly and Associate Prof. Dr. Ayman Ahmed Ezzat, who were willing to participate in my final defense committee.

I would like to thank all my work colleagues and my managers at ECG (Engineering Consultants Group) for their understanding, motivation and support. Special thanks go to Eng. Mokhles El Tabaa, Eng. Adel Saleh, Eng. AbdelRahman Ali, Eng. Omar Ahmed, Eng. Mohamed Mohsen, Eng. Mohamed Sabry Helal, Eng. Mohamed Hashim Khater, Eng. Khaled El Asfar, Eng. Dina Hamed for guiding my research for the past several years and giving me from their precious time for interviews to make the theoretical studies meet the professional career and get out with real results.

I would also like to thank Dr. Waleed Nassar, Eng. Abeer Raafat for their support, guidance and help in developing my background in Building Information Modeling.

And at last but not least, I would like to thank my brother Ahmed El Mossalamy and my friends Hamouda Youssef, Diaa Madkour, Mohamed Mekawy, Aliah El Hadidy, Mohamed Abaza, Mohamed AbdulShakour, Bassel Omara, Salma El Sherbiny, Radwa Youssef and Mai Medhat who were always willing to help and give their best suggestions.

Abstract

<u>Title:</u> Building Information Modeling (BIM) Technology Implementation in Lean Architecture through Managing human Resources

Description:

Lean Architecture has given very high importance to the people. It is the force of people which makes lean concepts a reality. The Human resource is a key area in today's business and the most important and most valuable of all resources any organization has. Every manager and department must manage its human resource effectively to make his organization leaner and to cope with the competitive market.

The construction industry as a whole has low profitability and invests too little in research, development and training. Whether a company is making good profit or a loss, there should always be an interest for the improvement of efficiency, quality and profitability. New processes, such as lean Architecture, bring a solution to the trilogy of problems encountered in the Architecture, Engineering and Construction (AEC) industry: time, cost and quality.

The change for better in the Architecture, Engineering and construction (AEC) industry requires the combination and integration of the four key functions: process, technology, organization and knowledge and information management to seamlessly integrate the other three.

BIM has tremendous potential, but this potential can be wasted if it is considered that the technology on its own will provide the answers without managing the human resources in the project.

This research aims to define clearly the concepts of Building Information Modeling and that of Lean thinking, their goals, benefits and challenges faced when first implemented and how to implement them successfully in an AEC firm. Then discussed how they can be integrated together for the sake of an organization and the whole industry achieving less wastes and adding value to architectural projects reaching client satisfaction.

Finally three case studies are presented and analyzed to show how BIM implementation can be supporting lean practice achieving its goals.

Table of Contents

		=
	ents	
•	es	
	2S	
	nyms	
	ninologies	
Introductio	n	xix
1 Chapt	er 1: Building Information Modeling	3
1.1 Intr	oduction	3
1.2 Buil	ding Information Modeling	4
1.2.1	History of BIM	5
1.2.2	BIM Conceptions and definitions	5
1.2.3	The difference between BIM and traditional CAD	7
1.2.4	Characteristics of BIM	9
1.3 BIM	1 Benefits	12
1.3.1	Quantitative benefits	13
1.3.2	Qualitative Benefits	18
1.4 BIM	1 Applications	19
1.4.1	Project Models (Visualization)	19
1.4.2	Simulation	20
1.4.3	Clash detection	21
1.4.4	Cost database and 3d models	22
1.4.5	Project Coordination & collaboration	23
1.5 BIM	1 Cultural aspect	27
1.5.1	Definition of Culture	27

	1.5.2	<u> </u>	The Human factor	.28
	1.5.3	3	BIM Cultural Challenges	.32
1.	6	BIM	Planning	.37
	1.6.1	L	BIM process (Adoption and Implementation)	.38
	1.6.2	2	BIM process Vs. BIM software	.40
	1.6.3	3	BIM Adoption	.41
	1.6.4	ļ	BIM Implementation	.43
1.	7 .	Job	Titles and Descriptions in the Age of BIM	.57
	1.7.1	L	CAD Manager versus BIM Manager	.58
	1.7.2	2	BIM Modeler: Roles and Responsibilities	.58
	1.7.3	3	The BIM Manager: Roles and Responsibilities	.59
	1.7.4		BIM Champion (BIM Coordinator and operator)	.60
	1.7.5	5	Other Roles: The BIM facilitator	.61
1.	8	Coll	aboration	.62
	1.8.1	L	Definition of collaboration	.62
	1.8.2	<u> </u>	Obstacles to Successful Collaboration	.62
	1.8.3	3	Strategies: Making Collaboration Work	.70
1.	9	BIM	and Integrated Design	.71
	1.9.1	L	Definition of Integrated Design	.71
	1.9.2	2	The integrated design process	.72
	1.9.3	3	Integrated Design as a Delivery Method	.73
	1.9.4		Best Kind of Building Procurement When BIM Is Used	.75
	1.9.5	5	Integrated design teams	.75
	1.9.6	5	Goals of BIM and integrated design	.76
	1.9.7	,	Phases of the Integrated Design Process	.76

1.9	.8	BIM Training	. 80
1.10	Wh	y clients choose BIM?	. 83
1.1	0.1	Owners motivating drivers	. 83
1.1	0.2	BIM benefits to owners	. 85
1.1	0.3	Barriers to implementing BIM: risks and common myths	. 90
1.11	Sumr	nary	.92
2	Chap	ter 2: Lean Practice	95
2.1	Intr	oduction	. 95
2.1	.1	Simplicity	. 95
2.2	Lea	n Concept	. 96
2.2	.1	Definition	. 96
2.2	.2	History and Origin of the terminology	. 97
2.2	.3	Wastes	. 98
2.3	Lea	n Design Management	101
2.3	.1	Lean Production	101
2.3	.2	Mass production Vs. Lean Production	102
2.3	.3	Lean Product development	104
2.3	.4	Just-In-Time & Total Quality Management	105
2.3	.5	Other management approaches and their basic goals	107
2.4	Lea	n Thinking principles	108
2.4	.1	Identify customer value	108
2.4	.2	Identify the value stream	
2.4	.3	Implement flow	111
2.4	4	Implement null	111

	2.4.5	Seek perfection	112
2.	5 Leai	n production methods	114
	2.5.1	Lean operating system	114
	2.5.2	Cell production	114
	2.5.3	Kaizen	114
2.0	6 Leai	n thinking applied to office activities	116
	2.6.1	Production processes and administrative processes	116
	2.6.2	Wastes in office activity	118
	2.6.3	Implementation of Lean in Office Activities	119
2.	7 Leai	n Architecture	121
	2.7.1	Definition	121
	2.7.2	Objectives and techniques	121
	2.7.3	Wastes in Construction	122
	2.7.4	Waste Solutions: "5S"	123
2.8	8 Imp	lementation of Lean thinking in construction	124
	2.8.1	Conceptual Framework	124
	2.8.2	Prerequisites for Lean Construction	125
	2.8.3	Flow	127
	2.8.4	Lean Performance	129
	2.8.5	Lean Construction Vs. Lean Production	130
	2.8.6 Construc	Difference between Lean Construction and tradit	
	2.8.7	Lean thinking applied to office activities in construction	131
2.9	9 Crea	ating a lean culture	132
	2.9.1	Role of Top Management in Lean transformation:	133
		V	

2.9 tra					Departments		
2.9					ation		
2.9					ansformation		
2.9							
2.10							
	.0.1						
2.1	.0.2	•	•				
2.1	.0.3	Egronomic	cs Vs. lean	thinking		•••••	144
2.11	Lea	n in project	delivery				145
2.1	1.1	Structure	of the Leai	n Project Deli	very System		145
2.1	1.2	Implemen	ting chang	e in different	firm sizes		147
2.1	1.3	CHIEF KNC	WLEDGE	OFFICER			147
2.1	1.4	INVESTME	NT				148
2.12	Pro	duction Pla	nning, Sch	eduling			148
2.1	2.1	Inputs					148
2.1	2.2	Outputs					148
2.1	2.3	Production	n schedulii	ng			148
2.13	BIN	/I and Lean	in busines	s developmeı	nt		150
2.1	3.1	The relation	on betwee	n BIM and Le	an		150
2.1	3.2	BIM techn	ology and	associated pi	rocesses		153
	.3.3		_	•	prove workflo	-	
pro	ocess	while main	taining the	e core benefit	s of BIM?		155
2.1	3.4		_	•	ign themselves		
							156

2.1	13.5	Applications of BIM vs. Wastes in Construction	158
2.1	13.6	Steps to implement BIM in a lean organization	160
2.14	Sun	nmary	162
3	Cha	pter 3: Case Studies and Conclusion	165
3.1	Intr	oduction	165
3.1	.1	How most firms use BIM	165
3.2	Met	thodology	165
3.2	.1	Theoretical Study	165
3.2	2	Analytical Study	166
3.3 Cairo		e Study no.1: INMA Commercial and Administrative Buildin t	
3.3	.1	Project Information	169
3.3	.2	Challenges	170
3.3	.3	BIM implementation	171
3.3	.4	Project management	177
3.3	.5	Quality Control	182
3.4	Case	e Study 2: Kuwait Office Building	183
3.4	.1	Project Information	184
3.4	.2	Challenges	185
3.4	.3	BIM Implementation	187
3.4	.4	Project management	200
3.4	.5	Quality Control	204
3.5	Case	e study no.3: Technology & Training Center, Marsa Matroul	າ 205
3.5	.1	Project Information	206
3.5	.2	Challenges	207
3 5	3	BIM implementation	207

3.5.4	Project management	209
3.5.5	Quality Control	213
3.6 Cor	nparative Analysis	214
3.6.1	Total Working Hours analysis	214
3.6.2	Working Hours distribution analysis	215
3.6.3	Quality Control	216
3.7 Find	dings	217
4 Chapt	er 4: Conclusion and Recommendation	221
4.1 Cor	nclusion	221
4.1.1	Research main conclusion	224
4.2 Rec	ommendations	225
4.2.1	Owners	225
4.2.2	Consultancy firms Top management	226
4.2.3	Managers of departments	226
4.2.4	Team leaders	227
4.2.5	Project managers	228
4.2.6	Team members	228
4.2.7	Educators	229
4.2.7	Researchers, software and products' developers	230
References		231

List of Figures

Figure 1-1: Conceptual diagram	4
Figure 1-2: Kuwait Office Building project, Autodesk Revit 2012	7
Figure 1-3: Relation between Time and effort through all project phases for E	
and CAD workflows	8
Figure 1-4: BIM Process Cycle	9
Figure 1-5: BIM dimensionality	. 11
Figure 1-6: Classification of BIM Benefits	
Figure 1-7: BIM Main Quantitative Benefits	. 13
Figure 1-8: General Perspective for a multi-disciplinary commercial project	
using Autodesk Revit	. 14
Figure 1-9: Classification of BIM Quantitaive Benefits	. 17
Figure 1-10: Sake diagram: reasons for working in BIM	
Figure 1-11: The results of a detailed RADIANCE analysis displayed within	
ECOTECT	. 20
Figure 1-12: Clash between the ductwork and structural steel beam using	
NavisWorks	. 21
Figure 1-13: Worksharing in a Revit project	. 23
Figure 1-14: Workflow in Revit files	. 25
Figure 1-15: Project Team Goals	. 30
Figure 1-16: The interrelationship of the four concepts that form the basis fo	
human action and interaction	. 31
Figure 1-17: Changing Mindsets	. 34
Figure 1-18: Main aspects affecting BI	. 35
Figure 1-19: BIM impacts and changes all levels, from individual to industry	. 36
Figure 1-20: CAD versus BIM adoption Chart	. 38
Figure 1-21: BIM Adoption considerations	. 39
Figure 1-22: The BIM adoption continuum	. 40
Figure 1-23: BIM perceptions	. 42
Figure 1-24: BIM Perceptions	. 42
Figure 1-25 Rules for BIM model interaction	. 44
Figure 1-26: Multiple factors impacting BIM successful implementation	. 45
Figure 1-27: Redline tasks in 2D and BIM	. 54
Figure 1-28: The hierarchy of BIM roles and titles	. 57
Figure 1-29: From visualization to coordination	. 63
Figure 1-30: Career Vs. Implementation	
Figure 1-31: CAD Vs. BIM Vs. Integrated Design workflow	. 71
Figure 1-32: From CAD towards more collaborative Integrated design	

Figure 1-33: Phases of traditional project delivery in integrated design	73
Figure 1-35: Facility Lifecycle	84
Figure 2-1: Timeline and history of Lean Production	97
Figure 2-2: Lean Manufacturing	. 101
Figure 2-3: The Value stream	. 111
Figure 2-4: Conceptual Framework of Lean Production Theory with Highligh	nted
Implemented Principles	. 113
Figure 2-5: Wastes in office activity	. 118
Figure 2-6: Time Vs. Waste in Lean practice	. 129
Figure 2-7: Hierarchy of positions	. 134
Figure 2-8: Maslow's hierarchy	. 141
Figure 2-9: Pareto Analysis	. 142
Figure 2-10: The Lean Project Delivery System	. 146
Figure 2-11: Communication centered planning	. 149
Figure 2-12: BIM benefits in Lean words	. 150
Figure 2-13: Value Vs. waste in BIM implementation	. 150
Figure 2-14: BIM technology and associated processes	. 153
Figure 2-15: Relationship between time and impact of design changes	. 154
Figure 3-1: Inma Commercial and Administrative building, 3D shot	. 168
Figure 3-2: Inma Commercial and Administrative building, 3D shot	. 168
Figure 3-3: Architectural Team Hierarchy for Project P1	. 169
Figure 3-4: 3D view for the project by using Autodesk Revit	. 172
Figure 3-5: 3D plan by using Autodesk Revit	. 172
Figure 3-6: 3D Section by using Autodesk Revit	. 173
Figure 3-7: Identifying the clash between the mechanical pipes, HVAC ducts	
the structural elements by using NavisWorks	. 173
Figure 3-8: Identifying the clash between the mechanical pipes, HVAC ducts	s and
the structural elements by using NavisWorks	. 174
Figure 3-9: Identifying the clash between HVAC ducts and the structural	
elements by using NavisWorks	
Figure 3-10: Levels of Coordination and Collaboration	
Figure 3-11: Man-Hours budget for Project P1	. 178
Figure 3-12: Architecture Resource Assignment for Project P1	. 179
Figure 3-13: Kuwait Office Building, 3D shot	
Figure 3-14: Kuwait Office Building, 3D shot	
Figure 3-15: Architectural Team Hierarchy for Project P2	
Figure 3-16: Elevation Type Sample for Project P2	
Figure 3-17: 3D view showing the external façade for project P2	
Figure 3-18: Time Schedule for Project P2	
Figure 3-19: 3D plan for Project P2 using Autodesk Revit	. 188

Figure 3-20: Coloured plans study using Autodesk Revit	188
Figure 3-21: 3D section by using Autodesk Revit	189
Figure 3-22: 2D and 3D Wall sections for project P2 by using Autodesk Revit	189
Figure 3-23: NavisWorks identified the clash	190
Figure 3-24: NavisWorks identified the clash	190
Figure 3-25: NavisWorks identified the clash between the mechanical pipes,	
HVAC ducts and the structural elements	192
Figure 3-26: NavisWorks identified the clash between the mechanical pipes,	
HVAC ducts and the structural elements	192
Figure 3-27: Using Worksets in Revit in Project P2	195
Figure 3-28: Sample of the Workset guidelines handbook at ECG	
Figure 3-29: Worksharing message at Project P2	197
Figure 3-30: Project P2 Layout using Autodesk Ecotect Software	198
Figure 3-31: North-West and South-West Elevation, using Autodesk Ecotect	
Software	198
Figure 3-32: North-East and South-East Elevation using Autodesk Ecotect	
Software	198
Figure 3-33: Weather Data for project P2, using Autodesk Ecotect software.	199
Figure 3-34: Man-hours budget for Project P2	200
Figure 3-35: Architectural Resource Assignment for Project P2	201
Figure 3-36: 3D shot for the Technology & Training Center	205
Figure 3-37: 3D shot for the Technology & Training Center	205
Figure 3-38: Architectural Team Hierarchy for Project P3	206
Figure 3-39: Man-hours budget for Project P3	210
Figure 3-40: Architecture Resource Assignment for Project P3	211
Figure 3-41: Comparison between working hours of projects P1, P2 and P3 p	er
disciplinediscipline	214
Figure 3-42: Comparison between working hours of projects P1, P2 and P3 p	er
phase	215
Figure 3-43: Comparison between the number of comments per each	
comments category for P1, P2 and P3	216
Figure 4-1: Success Cycle and Results	224