

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

PROGNOSTIC VALUE OF VARIOUS NEUROPHYSIOLOGICAL STUDIES IN PATIENTS WITH STROKE

Thesis

Submitted In Partial Fulfilment For The Requirements of MD Degree In Neurology

By

Wail Talaat Soliman

M.B.B.Ch, M.Sc. (P.M&N.) Assistant Lecturer in Neurology, El-Minia Faculty of Medicine.

Supervisors

Prof. Refaat Mahfouz Mahmoud

Prof. and Head of Department Neurology and Psychiatry El-Minia University

Prof. Peter Moore

Senior Lecturer in Neurology Liverpool University, England

Prof. Hamdy Nagieb Ahmed

Prof. and Head of Department of Neurology and Psychiatry
Assuit University

Prof. Amal Tawfik Mohammed

Prof. of Neurology El-Minia University

El-Minia University Faculty of Medicine B7211

Acknowledgment

Acknowledgment

I wish to express my deepest gratitude to *Prof. Rifaat Mahfonz*Mahmoud, Prof. of Psychiatry and Head of department of Neurology

and Psychiatry, El-Minia University for his enthusiastic help,

constructive criticism and constant guidance throughout this work as well

as my work in the department all through the years.

I would like to thank *Dr. Peter Moore, Senior lecturer in*Neurology, Liverpool University, United Kingdom for his endless meticulous supply of most recent knowledge, valuable discussions which highlighted the main core of this work. Through his remarks and guidance I have been able to get valuable experiences and avoid glaring errors.

I take this opportunity to express my deep respect to *Prof. Hamdy*Nagieb EL-Tallawy, *Prof. and Head of department of Neurology and*Psychiatry, Assuit University for his great effort, valuable advises and his patience in repeatedly revising the work making creative modifications.

It is a great honour to express my deep gratitude to *Prof. Amal Tawfik Mohammed, Prof. of Neurology, El-Minia University* for his encouragement, creative suggestions, great support, invaluable advices.

I would like to thank *Dr Hanaa Sayed Soliman*, Assistant *Prof. of*Psychiatry, El-Minia University for her enthusiastic support and great effort that made remarkable differences to the work.

My sincere gratitude to *Dr. Wafaa Mohammed, Assistant Prof. of Neurology, Assuit University* for her encouragement, patience and kind support throughout the work.

Contents

I.	Introduction and aim of the work1
II.	Review of literature:
Α	. Stroke definition and
1,	Definition3
2.	Incidence3
3.	Blood supply of the brain6
4.	Causes of stroke9
5.	Classifications of stroke10
6.	Stroke outcome
	Clinical predictors of stroke outcome:
1.	Clinical predictors of stroke outcome
2.	Duration of recovery
3.	Approaches to outcome prediction
C.	Somatosensory evoked potential:
1.	Introduction 29
2.	Clinical uses of somatosensory evoked potentials31
3.	Somatosensory evoked potentials in stroke31
D.	Motor evoked potential:
1.	Introduction38
	Transcranial magnetic stimulation38
3.	Motor evoked potential (MEP)39
4.	Clinical applications of Motor evoked potential41
5.	Motor evoked potentials in stroke

III. Methodology:

A.	. Patients	5
B.	. Somatosensory evoked potentials	58
C.	. Motor evoked potentials	62
E.	. Statistical analysis	68
IV.	Results:	
A.	Clinical data description	70
B.	Assessment of improvement	96
C.	Evoked potential findings	108
D.	Correlation between baseline clinical data	
	and outcome	140
E.	Correlation between evoked potential	
	findings and outcome	150
F.	Comparing the outcome of different groups of patier	nts167
V.	Discussion:	
A.	Patients criteria and timing of the study	177
В.	Clinical findings at different stages of the study	178
C.	Assessment of improvement	179
D.	Somatosensory and motor evoked	
	potentials in stroke patients	180
E.	Correlation with and prediction of outcome	186
VI.	Summary and conclusion	194
/11_	References	100

List of abbreviations:

CMCT = Central motor conduction time

CSCT = Central sensory conduction time

EP = Evoked potential

HMAS = Hand motor assessment scale

MAS = Modified Ashworth scale

MEP = Motor evoked potential

MRCS = Medical research council scale

SEP = Somatosensory evoked potential

TMS = Transcranial magnetic stimulation

Introduction and Aim of the work

Introduction

Stroke is the third most common cause of death and is the commonest neurological cause of disability worldwide. Nearly 50% of stroke patients survive for 5 years.

Although diagnosis of stroke is no longer a problem after the advances in neuroimaging techniques, predicting functional outcome following stroke remains a problem to which there is not yet a satisfactory solution. Accurate and early prediction of the outcome of acute stroke would help early management and planning of rehabilitation and has been shown to improve the management. And, it also has been argued that certain subgroups of the stroke population may get benefit more than others from specific rehabilitation services. So, it is very important to identify predictors that discriminate between stroke patients with good and poor prognosis.

For many years somatosensory evoked potentials (SEPs) have been studied in patients with stroke to test its value in predicting the outcome. Most of the studies found some degree of predictability. However, some authors reported no adding role of SEP over the clinical evaluation in predicting stroke outcome.

The motor evoked potentials (MEPs) are generated through stimulation of the motor cortex through the intact skull. It provides an objective reproducible method for demonstrating abnormal function of the motor cortex or the central motor pathways. The two known methods of cortical stimulation are electrical and magnetic. Magnetic stimulation is a pain free, readily acceptable by subjects.

The different characteristics of MEPs elicited by transcranial magnetic stimulation (TMS) have been evaluated in different studies in correlation to the clinical status of patients with stroke. Also, the relationship between MEP and the clinical outcome of function in stroke have been studied for many years. Most of studies found some role of MEP in prediction of stroke outcome but still others found no correlation with outcome or at least MEP has no additional value over and above the clinical examination in outcome prediction.

Aim of the work:

The aim of the study is to evaluate the role of somatosensory and motor evoked potentials in the prediction of outcome of stroke and whether their role is superior to the simple clinical examination.

Review of literature