

# Ain Shams University Faculty of Engineering Structural Engineering Department

# "Repair of Concrete Columns Containing High Percentage of Chlorides"

A Thesis
Submitted in partial fulfillment for the requirements of the Degree of

## MASTER OF SCINCE

IN

CIVIL ENGINEERING (STRUCTURES)

# $\mathbf{BY}$

Omar Sayed Kamal Abdeen Structural Engineer

Supervised by

Prof. Dr .Omar Aly El-Nawawy
Professor of R.C Structures
Faculty of Engineering
Ain Shams University

Prof. Dr .Gouda Attia Mohamed
Professor of Structural Engineering
Dean of Faculty of Engineering
Zagazig University

## **STATEMENT**

This thesis is submitted to Ain Shams University, Cairo, Egypt, on april 2014 for degree of Master of Science in Civil Engineering (Structural).

The work included in this thesis was carried out by the author at Reinforced Concrete Lab , Faculty Of Engineering , Department of Civil Engineering (Structural Division), Zagazig University.

No part of this thesis has been submitted for a degree or qualification at any other University or Institute.

Date : 16 / 9 /2014

Name : Omar Sayed Kamal Abdeen

Signature : Omar Sayed Kamal Abdeeni

# INFORMATION ABOUT THE RESEARCHER

Name : Omar Sayed Kamal Abdeen

Date of Birth: February 20th, 1988

Date of Birth: elkoba, Cairo, Egypt

Qualifications: B.Sc. Degree in civil Engineering Faculty of Engineering,

Zagazig University

**Present Job**: Site Engineer, Co-operation Petroleum Company

Signature : Omar Sayed Kamal Abdeen

## **ACKNOWLGMENTS**

#### First of all, I would like to thank God for every gift bestowed on me...

Next, I would like to extend my warmest heartfelt gratitude to all my family who stood by me and supported me un every step of my life. I would like to deeply thank them and convey my sincere appreciation for their assistance, encouragement, support, understanding and patience.

Moreover, I would like to extend sincere thanks to my advisor, **Prof. Dr. Omar El-Nawawy** for providing the guidance necessary to complete this research and also for his constant encouragement, support, and friendship which was the motivating force that kept work on my thesis in force until completion. I would like to express my admiration and thanks for his loyalty and trustfulness.

I would like to express my sincerest appreciation to my advisor Prof. **Dr. Gouda Attia** for his guidance, continuous, valuable guidance, and the investments, giving me the opportunity to be involved in such interesting research.

I would like to thank the Concrete Research Laboratory, Zagazig University for supporting me during my research. I would like to thank those who helped and improved the means of casting and testing the samples. I am also grateful to those unmentioned others for contributing in countless ways to my writing and being interested in my research. To all of those contributors, I am most grateful...

I believe that I have given my utmost effort in developing this research as accurately and truthfully as possible. Moreover, I am surely personally responsible for the conclusions and opinions expressed here.

Finally, I'd like to dedicate this work to **my Father, Mother, Sister and Brothers** as a taken of appreciation ... I would like to extend my warmest heartfelt gratitude to such an honored ... I was really fortunate to fortunate to receive the benefit of his spirit and intelligence.

## **Omar Sayed Kamal Abdeen**



## Ain Shams University Structural Engineering Department

Abstract of the M.Sc. Thesis Submitted by:

Eng. Omar Sayed Kamal Abdeen

Title of the thesis

Repair of RC Columns Containing High Percentage of Chlorides **Supervisors:** 

- 1- Prof. Dr. Omar Aly Mousa El-Nawawy
- 2- Prof. Dr .Gouda Attaia Mohamud Attaia

## **ABSTRACT**

This research contains testing of 29 RC columns with comparable dimensions (200 x 200 x 1500 mm) and (200 x 300 x 1500 m). They are cast using a common concrete mix and supplied with different (sodium chloride to cement) ratios (i.e. by weight). Nine control columns did not contain to chloride, and 12 untreated together with 8 treated columns were subjected to chloride by adding different salt cement ratio (i.e. weight) (s/c) equals to (3%, 6% and 10%) to the mixing water of concrete.

The 29 concrete columns were divided into 10 groups; each encompasses control, untreated and treated columns (supplied with (CFRP) or increase the thickness of the concrete). For modeling, the finite element method was used by applying (ANSYS 14) program and a good agreement was obtained between the experimental results and theoretical results.

**Keywords:** corrosion, sodium chloride, experimental program, untreated columns, treated columns, CFRP, modeling.

# TABLE OF CONTENTS

|                                                     | Page |
|-----------------------------------------------------|------|
| ACKNOWLEGMENTS                                      | iii  |
| ABSTRACT                                            | v    |
| CONTENTS                                            | iv   |
| LIST OF FIGURES                                     | xiii |
| LIST OF PHOTOES.                                    | xxi  |
| LIST OF TABLES                                      | xiii |
| CHAPTER (1): INTRODUCTION                           | 1    |
| I.1 CONCRETE DEGRADATION AND STEEL CORROSION        | 1    |
| 1.2 STUDY OBJECTIVES                                | 2    |
| I.3 PLANNED METHODOLOGY.                            | 3    |
| I.4 THESIS ORGANIZATION.                            | 4    |
| CHAPTER (2): LITERATURE REVIEW                      | 6    |
| II.1 CORROSION AND ITS EFFECT ON CONCRETE.          | 7    |
| II.2 CHLORIDE-INDUCED CORROSION                     | 8    |
| II.3 FACTORS AFFECTING CHLORIDE RESISTANCE          | 10   |
| II.3.1. FACTORS RELATED TO CONCRETE                 | 11   |
| II.3.2. FACTORS RELATED TO THE STRUCTURE            | 14   |
| II.3.3. CHLORIDE TRANSPORT.                         | 15   |
| II.4. CHLORIDE RESISTANCE TESTS                     | 16   |
| II.5. INDIRECT MEASURES                             | 19   |
| II.5.1. CEMENT TYPE AND WATER-CEMENT RATIO          | 19   |
| II.5.2. COMPRESSIVE STRENGTH.                       | 21   |
| II.5.3. RAPID CHLORIDE PERMEABILITY TEST            | 22   |
| II.6 THEORETICAL STUDIES                            | 25   |
| II.6.1. CONCRETE STRUCTURES AND CLIMATE CHANGE      | 25   |
| II.6.2. COMPOSITE FIBER WRAPS EFFECTS ON CORROSION  | 26   |
| II.6.2.a. CONCRETE COLUMNS IN SIMULATED SPLASH ZONE | 27   |
| II.7. EXPERIMENTAL STUDIES.                         | 32   |

| II.8. EXTRACTION OF CHLORIDES                                   | 36   |
|-----------------------------------------------------------------|------|
| II.9. NUMERICAL MODELING.                                       | 37   |
| II.10. THERMAL CRACKING.                                        | 39   |
| II.11. FINITE ELEMENT NUMERICAL MODELS                          | 41   |
| II.12. CORROSION STAINING IN CONCRETE                           | 42   |
| II.13. MINIMIZING CORROSION OF STEEL                            | 46   |
| II.14. COMMENTS                                                 | 52   |
| CHAPTER (3): EXPERIMENTAL PROGRAM                               | . 54 |
| III.1. EXPERIMENTAL PROGRAM                                     | 54   |
| III.2. SPECIMEN PREPARATION AND IMPLEMENTED MATERIALS           | 59   |
| III.2.1.CEMENT                                                  | 59   |
| III.2.2. AGGREGATE                                              | 60   |
| III.2.3. SALTS                                                  | 60   |
| III.2.4. STEEL REINFORCEMENT                                    | 60   |
| III.2.5. CONCRETE MIX PROPOTION                                 | 64   |
| III.2.6. CASTING AND CURING THE SPECIMENS                       | 64   |
| III.2.7. UNTREATED COLUMNS CASTING AND PAINTING                 | 65   |
| III.3. SETTING THE LABORATORY                                   | 68   |
| III.4. FIXING THE MEASURING DEVICES                             | 69   |
| III.5. UNDERTAKING MEASUREMENTS                                 | 71   |
| III.5.1. STRAIN MEASUREMENTS OF STEEL                           | 71   |
| III.5.2. STRAIN MEASUREMENTS OF CONCRETE                        | 71   |
| III.5.3. LOAD MEASUREMENTS                                      | 71   |
| III.5.4. LATERAL DISPLACEMENT MEASUREMENTS                      | 72   |
| III.5.5. CRACK PATTERN                                          | 72   |
| CHAPTER (4): RESULTS ANALYSIS AND DISCUSSIONS                   | 73   |
| IV.1. RESULTS ANALYSIS OF THE UNTREATED GROUPS                  | 74   |
| IV.2. RESULTS PRESENTATION OF THE UNTREATED GROUPS              | 76   |
| IV.3. DISCUSSION AND COMMENTS ON THE EFFECT OF CHLORIDES FOR TH | Έ    |
| UNTREATED GROUPS                                                | 77   |
| IV.3.1. LATERAL DISPLACEMENT                                    | 77   |
| IV. 3.2. STRAIN                                                 | 81   |
| IV.3.3. MODES OF FAILURE                                        | 89   |

| IV.4. COMPARISON                                                | 91    |
|-----------------------------------------------------------------|-------|
| CHAPTER (5): METHEDOLOGY FOR REPAIR                             | 147   |
| V.1. RESULTS ANALYSIS OF THE TREATED GROUPS                     | 148   |
| V.2. RESULTS PRESENTATION OF THE TREATED GROUPS                 | 149   |
| V.3. DISCUSSION AND COMMENTS ON THE EFFECT OF CHLORIDES FOR THE | Е     |
| TREATED GROUPS                                                  | 150   |
| V.3.1. LATERAL DISPLACEMENT                                     | . 150 |
| V. 3.2. STRAIN                                                  | 153   |
| V.3.3. MODES OF FAILURE                                         | 157   |
| V.4. COMPARISON                                                 | 158   |
| CHAPTE (6):FINITE ELEMENT MODELING MEASURES                     | 191   |
| VI.1. INTRODUCTION                                              | 191   |
| VI.2FINITE ELEMENT IDEALIZATIONS                                | 191   |
| VI.3.FINITE ELEMENT METHOD                                      | 192   |
| VI.4. MAIN STEPS FOR MODELING R.C. COLUMN USING ANSYS (14)      | 193   |
| VI.4.1. ELEMENTS TYPES.                                         | 193   |
| VI.4.1.1. CONCRETE ELEMENT                                      | 193   |
| VI.4.1.2. STEEL REINFORCEMENT ELEMENT                           | 194   |
| VI.4.1.3. LEAD PLATES AND SUPPORTS                              | 196   |
| VI.4.2. REAL CONSTANTS                                          | . 197 |
| VI.4.2.1. CONCRETE ELEMENTS                                     | . 197 |
| VI.4.2.2. STEEL REINFORCEMENT ELEMENT                           | . 198 |
| VI.4.2.3. LEAD PLATES AND SUPPORTS                              | . 198 |
| VI.4.3. MATERIAL PROPERTIES                                     | . 198 |
| VI.4.3.1. CONCRETE ELEMENTS                                     | . 198 |
| VI.4.3.2. STEEL REINFORCEMENT ELEMENT                           | . 202 |
| VI.4.3.3 LEAD PLATES AND SUPPORTS                               | . 203 |
| VI.4.4 MODELING                                                 | . 203 |
| VI.4.4.1 SOLID65                                                | . 203 |
| VI.2.4.2 LINK180                                                | . 204 |
| VI.4.4.3 SOLID45                                                | . 204 |
| VI.4.5 NUMBERING CONTROLS                                       | . 205 |
| VI.4.6 LOADS AND BOUNDARY CONDITIONS                            | 205   |

| VI.4.7. ANALYSIS PROCESS FOR THE FINITE ELEMENT MODEL   | 205   |
|---------------------------------------------------------|-------|
| VI.4.8. LOAD STEPPING AND FAILURE DEFINITION FOR MODELS | 207   |
| VI.5. EXPERIMENTAL COLUMNS                              | 207   |
| VI.5.1. DESCRIPTION OF THE PROGRAM                      | 207   |
| VI.5.2. GEOMETRY OF COLUMNS                             | 207   |
| VI.5.3. REINFORCEMENT OF COLUMN                         | 208   |
| VI.5.4. MATERIAL CHARACTERISTICS OF COLUMN              | 209   |
| VI.5.4.1. CONCRETE PROPERTIES                           | 209   |
| VI.5.6. INSTRUMENTATION FOR COLUMN                      | 210   |
| VI.5.6.1. LOAD MEASUREMENT                              | 210   |
| VI.5.6.2. DISPLACEMENT DIAL GAUGE                       | 210   |
| VI.5.6.3. CONCRETE MECHANICAL STRAIN GAUGES             | 210   |
| VI.5.6.4. STEEL ELECTRICAL STRAIN GAUGES                | 211   |
| VI.6. ANSYS FINITE ELEMENT MODEL FOR COLUMN             | .211  |
| VI.6.1. ELEMENTS TYPES FOR COLUMN                       | . 212 |
| VI.6.1.1. REINFORCED CONCRETE                           | 212   |
| VI.7. DETAILING OF THE MODEL FOR COLUMN                 | 212   |
| VI.7.1 SOLID65                                          | 212   |
| VI.7.2 LINK 180                                         | 213   |
| VI.8. NUMBERING CONTROLS                                | 215   |
| VI.8.1. LOADS AND BOUNDARY CONDITIONS                   |       |
| VI.9. FIRST EXAMPLE (CONTROL COLUMN)                    | 217   |
| VI.10. SECOND EXAMPLE (EXPERIMENTAL COLUMN)             | 219   |
| VI.11. THIRD EXAMPLE (TREATED COLUMN)                   | 221   |
| VI.12. FORTH EXAMPLE (TREATED COLUMN)                   | . 223 |
| CHAPTER (7): SUMMARY AND CONCLUSIONS                    | 226   |
| VII.1. SUMMARY                                          | 226   |
| VII.2. CONCLUSIONS                                      | 227   |
| VII.2.1. CONCLUSIONS BASED ON EXPERIMENTAL WORK         | 227   |
| VII.2.2. CONCLUSIONS BASED ON NUMERICAL ANALYSIS        | 228   |
| VII.3. RECOMENDATIONS FOR FUTURE WORK                   | 229   |
| REFERENCES                                              | 231   |
| ARABIC SUMMARY                                          |       |

# LIST OF FIGURES

|                                                                                          | Page  |
|------------------------------------------------------------------------------------------|-------|
| CHAPTER (2):                                                                             |       |
| Figure (II.1) Formation of ferrous oxide                                                 | 9     |
| Figure (II.2) Effect of water-cement ratio and cement type on the chloride resistance of |       |
| concrete                                                                                 | 12    |
| Figure (II.3) Effectiveness of various curing regimes on the porosity of concrete        | . 13  |
| Figure (II.4) Compressive strength and water-cement ratio relationship                   | . 17  |
| Figure (II.5) Effect of water-cement ratio and cement type on the chloride resistance of |       |
| concrete                                                                                 | 20    |
| Figure (II.6) Influence of concrete strength on water permeability                       | . 22  |
| Figure (II.7) Influence of strength on medium-term chloride diffusion                    | . 22  |
| Figure (II.8) ASTM C1202 as indicator of chloride resistance                             | . 24  |
| Figure (II.9) RCPT28 versus De.365 and RCPT42 versus Da.365                              | . 24  |
| Figure (II.10) coastal Structures subjected to de-icing                                  | . 28  |
| Figure (II.11) Effects of chlorides                                                      | . 29  |
| Figure (II.12) Effects of oxygen supply                                                  | . 30  |
| Figure (II.13) Tested columns                                                            | . 33  |
|                                                                                          |       |
| CHAPTER (4):                                                                             |       |
| Figure (IV.1) Relation between load and lateral displacement at S/C ratio equals 3%      | oftor |
| (6) months                                                                               |       |
|                                                                                          |       |
| Figure (IV.2) Relation between load and lateral displacement at S/C ratio equals 3%      |       |
| (12) months                                                                              |       |
| Figure (IV.3) Relation between load and lateral displacement at S/C ratio equals 3%      |       |
| (6,12) months                                                                            |       |
| Figure (IV.4) Relation between load and strain of steel at S/C ratio equals 3%           |       |
| (6,12) months                                                                            |       |
| Figure (IV.5) Relation between load and strain of steel at S/C ratio equals 3%           |       |
| (6,12) months                                                                            |       |
| Figure (IV.6) Relation between load and strain of steel at S/C ratio equals 3%           |       |
| (6,12) months                                                                            | . 97  |

| Figure (IV.7) Relation between load and strain of concrete at S/C ratio equals 3% at     | ter |
|------------------------------------------------------------------------------------------|-----|
| (6) months                                                                               | 8   |
| Figure (IV.8) Relation between load and strain of concrete at S/C ratio equals 3% af     | ter |
| (12) months                                                                              | 8   |
| Figure (IV.9) Relation between load and strain of concrete at S/C ratio equals 3% af     | ter |
| (6,12) months                                                                            | 9   |
| Figure (IV.10) Relation between load and lateral displacement at S/C ratio equals 6% af  | ter |
| (6) months                                                                               | 03  |
| Figure (IV.11) Relation between load and lateral displacement at S/C ratio equals 6% af  | ter |
| (12) months                                                                              | 03  |
| Figure (IV.12) Relation between load and lateral displacement at S/C ratio equals 6% af  | ter |
| (6,12) months                                                                            | 04  |
|                                                                                          |     |
| Figure (IV.13) Relation between load and strain of steel at S/C ratio equals 6% af       | ter |
| (6) months                                                                               | 04  |
| Figure (IV.14) Relation between load and strain of steel at S/C ratio equals 6% af       | ter |
| (12) months                                                                              | 05  |
| Figure (IV.15) Relation between load and strain of steel at S/C ratio equals 6% af       | ter |
| (6,12) months                                                                            | 05  |
| Figure (IV.16) Relation between load and strain of concrete at S/C ratio equals 6% af    | ter |
| (6) months                                                                               | 06  |
| Figure (IV.17) Relation between load and strain of concrete at S/C ratio equals 6% af    | ter |
| (12) months                                                                              | 06  |
| Figure (IV.18) Relation between load and strain of concrete at S/C ratio equals 6% af    | ter |
| (6,12) months                                                                            | 07  |
| Figure (IV.19) Relation between load and lateral displacement at S/C ratio equals 10% af | ter |
| (6) months                                                                               | 11  |
| Figure (IV.20) Relation between load and lateral displacement at S/C ratio equals 10% af | ter |
| (12) months                                                                              | 11  |
| Figure (IV.21) Relation between load and lateral displacement at S/C ratio equals 10% af | ter |
| (6,12) months                                                                            | 12  |
| Figure (IV.22) Relation between load and strain of steel at S/C ratio equals 10% af      | ter |
| (6) months                                                                               | 12  |

| Figure (IV.23) Relation between load and strain of steel at S/C ratio equals 10% aft     | eı |
|------------------------------------------------------------------------------------------|----|
| (12) months                                                                              | .3 |
| Figure (IV.24) Relation between load and strain of steel at S/C ratio equals 10% aft     | er |
| (6,12) months                                                                            | .3 |
| Figure (IV.25) Relation between load and strain of concrete at S/C ratio equals 10% aft  | eı |
| (6) months                                                                               | 4  |
| Figure (IV.26) Relation between load and strain of concrete at S/C ratio equals 10% aft  | eı |
| (12) months                                                                              | .4 |
| Figure (IV.27) Relation between load and strain of concrete at S/C ratio equals 10% aft  | eı |
| (6,12) months                                                                            | .5 |
| Figure (IV.28) Relation between load and lateral displacement at S/C ratio equals 3% aft | eı |
| (6) months                                                                               | 9  |
| Figure (IV.29) Relation between load and lateral displacement at S/C ratio equals 3% aft | eı |
| (12) months                                                                              | 9  |
| Figure (IV.30) Relation between load and lateral displacement at S/C ratio equals 3% aft | eı |
| (6,12) months                                                                            | 20 |
| Figure (IV.31) Relation between load and strain of concrete at S/C ratio equals 3% aft   | eı |
| (6)months                                                                                | 20 |
| Figure (IV.32) Relation between load and strain of concrete at S/C ratio equals 3% aft   | eı |
| (12)months                                                                               | 21 |
| Figure (IV.33) Relation between load and strain of concrete at S/C ratio equals 3% aft   | eı |
| (6,12) months                                                                            | 21 |
| Figure (IV.34) Relation between load and strain of steel at S/C ratio equals 3% aft      | eı |
| (6)months                                                                                | 22 |
| Figure (IV.35) Relation between load and strain of steel at S/C ratio equals 3% aft      | eı |
| (12)months                                                                               | 22 |
| Figure (IV.36) Relation between load and strain of steel at S/C ratio equals 3% aft      | eı |
| (6,12) months                                                                            | 23 |
| Figure (IV.37) Relation between load and lateral displacement at S/C ratio equals 6% aft | eı |
| (6) months                                                                               | 27 |
| Figure (IV.38) Relation between load and lateral displacement at S/C ratio equals 6% aft | eı |
| (12) months 12                                                                           | 27 |

| Figure (IV.39) Relation between load and lateral displacement at S/C ratio equals 6% a  | ıfter |
|-----------------------------------------------------------------------------------------|-------|
| (6,12) months                                                                           | 128   |
| Figure (IV.40) Relation between load and strain of concrete at S/C ratio equals 6% a    | ıfter |
| (6) months                                                                              | 128   |
| Figure (IV.41) Relation between load and strain of concrete at S/C ratio equals 6% a    | ıfter |
| (12) months                                                                             | 129   |
| Figure (IV.42) Relation between load and strain of concrete at S/C ratio equals 6% a    | ıfter |
| (6,12) months                                                                           | 129   |
| Figure (IV.43) Relation between load and strain of steel at S/C ratio equals 6% a       | ıfter |
| (6) months                                                                              | 130   |
| Figure (IV.44) Relation between load and strain of steel at S/C ratio equals 6% a       | ıfter |
| (12) months                                                                             | 130   |
| Figure (IV.45) Relation between load and strain of steel at S/C ratio equals 6% a       | ıfter |
| (6,12) months                                                                           | 131   |
| Figure (IV.46) Relation between load and lateral displacement at S/C ratio equals 10% a | ıfter |
| (6) months                                                                              | 135   |
| Figure (IV.47) Relation between load and lateral displacement at S/C ratio equals 10% a | ıfter |
| (12) months                                                                             | 135   |
| Figure (IV.48) Relation between load and lateral displacement at S/C ratio equals 10% a | ıfter |
| (6,12) months                                                                           | 136   |
| Figure (IV.49) Relation between load and strain of concrete at S/C ratio equals 10% a   | ıfter |
| (6) months                                                                              | 136   |
| Figure (IV.50) Relation between load and strain of concrete at S/C ratio equals 10% a   | ıfter |
| (12) months                                                                             | 137   |
| Figure (IV.51) Relation between load and strain of concrete at S/C ratio equals 10% a   | ıfter |
| (6,12) months                                                                           | 137   |
| Figure (IV.52) Relation between load and strain of steel at S/C ratio equals 10% a      | ıfter |
| (6) months                                                                              | 138   |
| Figure (IV.53) Relation between load and strain of steel at S/C ratio equals 10% a      | ıfter |
| (12) months                                                                             | 138   |
| Figure (IV.54) Relation between load and strain of steel at S/C ratio equals 10% a      | ıfter |
| (6.12) months                                                                           | 139   |

| Figure (IV.55) Relation between load and lateral displacement at different S/C ratios | arter |
|---------------------------------------------------------------------------------------|-------|
| (6) months                                                                            | 139   |
| Figure (IV.56) Relation between load and strain of steel at different S/C ratios      | after |
| (6) months                                                                            | 140   |
| Figure (IV.57) Relation between load and strain of concrete at different S/C ratios   | after |
| (6) months                                                                            | 140   |
| Figure (IV.58) Relation between load and lateral displacement at different S/C ratios | after |
| (12) months                                                                           | 141   |
| Figure (IV.59) Relation between load and lateral displacement at different S/C ratios | after |
| (6,12) months                                                                         | 141   |
| Figure (IV.60) Relation between load and strain of concrete at different S/C ratios   | after |
| (12) months                                                                           | 142   |
| Figure (IV.61) Relation between load and strain of concrete at different S/C ratios   | after |
| (6,12) months                                                                         | 142   |
| Figure (IV.62) Relation between load and strain of steel at different S/C ratios      | after |
| (12) months                                                                           | 143   |
| Figure (IV.63) Relation between load and strain of steel at different S/C ratios      | after |
| (6,12) months                                                                         | 143   |
| Figure (IV.64) Relation between load and lateral displacement at different S/C ratios | after |
| (12) months                                                                           | 144   |
| Figure (IV.65) Relation between load and lateral displacement at different S/C ratios | after |
| (6,12) months                                                                         | 144   |
| Figure (IV.66) Relation between load and strain of concrete at different S/C ratios   | after |
| (12) months                                                                           | 145   |
| Figure (IV.67) Relation between load and strain of concrete at different S/C ratios   | after |
| (6,12) months                                                                         | 145   |
| Figure (IV.68) Relation between load and strain of steel at different S/C ratios      | after |
| (12) months                                                                           | 146   |
| Figure (IV.69) Relation between load and strain of steel at different S/C ratios      | after |
| (6.12) months                                                                         | 146   |

# **CHAPTER (5):**

| Figure (V.1) Relation between load and lateral displacement of S/C ratio equals 3% after  |
|-------------------------------------------------------------------------------------------|
| (6) months                                                                                |
| Figure (V.2) Relation between load and lateral displacement of S/C ratio equals 3% after  |
| (12) months                                                                               |
| Figure (V.3) Relation between load and lateral displacement of S/C ratio equals 3% after  |
| (6,12) months                                                                             |
| Figure (V.4) Relation between load and strain of steel of S/C ratio equals 3% after       |
| (6) months                                                                                |
| Figure (V.5) Relation between load and strain of steel of S/C ratio equals 3% after       |
| (12) months                                                                               |
| Figure (V.6) Relation between load and strain of steel of S/C ratio equals 3% after       |
| (6,12) months                                                                             |
| Figure (V.7) Relation between load and strain of concrete of S/C ratio equals 3% after    |
| (6) months                                                                                |
| Figure (V.8) Relation between load and strain of concrete of S/C ratio equals 3% after    |
| (12) months                                                                               |
| Figure (V.9) Relation between load and strain of concrete of S/C ratio equals 3% after    |
| (6,12) months                                                                             |
| Figure (V.10) Relation between load and lateral displacement of S/C ratio equals 6% after |
| (6) months                                                                                |
| Figure (V.11) Relation between load and lateral displacement of S/C ratio equals 6% after |
| (12) months                                                                               |
| Figure (V.12) Relation between load and lateral displacement of S/C ratio equals 6% after |
| (6,12) months                                                                             |
| Figure (V.13) Relation between load and strain of steel of S/C ratio equals 6% after      |
| (6) months                                                                                |
| Figure (V.14) Relation between load and strain of steel of S/C ratio equals 6% after      |
| (12) months                                                                               |
| Figure (V.15) Relation between load and strain of steel of S/C ratio equals 6% after      |
| (6,12) months                                                                             |