

Ain Shams University Faculty of Computers and Information Sciences Computer Systems Department

Performance Analysis and Enhancement of Optical Interconnection Networks for High Performance Supercomputers

Thesis submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences

By

Ahmad Muhammad Ahmad Mahany

B.Sc. in Computer and Information Sciences (2011), Demonstrator at Computer Systems Department

Under Supervision of

Prof. Dr. Hossam Faheem

Professor
Computer Systems Department
Faculty of Computers and Information Sciences
Ain Shams University

Prof. Dr. Samy Ghoniemy

Professor
Faculty of Informatics and Computer Science
British University in Egypt

Cairo 2017

This thesis is dedicated to my mother, i really can't describe you in a book. To the memory of my father. I really miss you, but I know that you are happy of this progress of my life. I always pray for you. Thanks to my brother, sister and my future wife. Without all of you, i could not complete that work.

Acknowledgements

My Master thesis has been fulfilled at Computers Systems Department, FCIS, Ain Shams University. Many people helped me and gave me their support to finish this work. I highly appreciate Prof. Hossam Faheem for his advices and kind instructions. Also, I highly appreciate Prof. Samy Ghoneimy for his kind support and guiding me to the right path. His wide knowledge in the field of optical interconnection networks enriches my research. Finally, many thanks to all my professors, staff members, and colleagues of FCIS Ain Shams.

Abstract

Recent advances in the manufacturing of nano-photonic devices and optical networks on chip together with advanced optical routing can enable heterogeneous HPC systems of more than 1000 cores to efficiently perform terascale computing.

In this work, a Wavelength Division Multiplexed Photonic Network-on-Chip (WDM-PNoC) is proposed to replace the conventional electrical Network-on-Chip (NoC) of the homogeneous HPC systems and will be simulated on an IBM Blue Gene/q compute chip as a case study. The proposed WDM-PNoC is intended to reduce the performance limitations of homogeneous HPC systems and provide significant low latency, high bandwidth, and low power dissipation. A WDM-PNoC architecture for optical routing and switching is modeled and developed using a customized version of the PhoenixSim simulator. The proposed models are based on recent advancement in nano-photonics device fabrication, architecture design, CAD optimization and include on-chip optical light sources and modulators, photodetectors, buffers, switches, couplers, optical waveguides, and on-chip WDM devices.

Through a series of simulations, the efficiency of the proposed system is studied in terms of power and energy consumption, data transmission latency and throughput. Moreover, the design parameters of a commercial IBM Blue Gene/q compute chip were used to compare the overall system performance using its current conventional electrical architecture with WDM-PNoC architecture under synthetic random traffic with different loads. The proposed

architecture reduces the overall energy consumption by approximately 40% compared with the electronic one, and achieves an average decrease in end-to-end delay of approximately 60%, meanwhile it remarkably exceeds the offered throughput of the current commercial system.

An enhanced WDM-PNoC model is proposed by including an enhanced WDM-PNoC architecture, which reduces the overall energy consumption by approximately 40% when it is compared with the static WDM-PNoC without negatively affecting the end-to-end delay. The results also show the performance superiority of the proposed enhanced WDM-PNoC.

Contents

1	Intr	oductio	on	1
	1.1	Overv	v <mark>iew</mark>	1
	1.2	Proble	em Statement	4
	1.3	Motiv	v <mark>ation</mark>	4
	1.4	Object	tive	5
	1.5	Thesis	s Contribution	5
	1.6	Thesis	s Organization	6
2	Bac	kgroun	nd and Related work	7
	2.1	Photo	onic Interconnects	7
	2.2	Photo	onic Technology	8
		2.2.1	Waveguides	9
		2.2.2	Laser	10
		2.2.3	Coupler	11
		2.2.4	Micro-Ring Resonator	11
		2.2.5	Modulators	12
		2.2.6	Photodetectors	13
	2.3	NoC 7	Topology	13
	2.4	Photo	onic Network Architectures	14
		2.4.1	Packet Switching Networks	16
		2.4.2	Circuit Switching Networks	16
		2.4.3	Wavelength Routed Networks	17
			Source-Based Routing	18
			Destination-Based Routing	18

			Multiple-Write Single-Read	19
			Single-Write Multiple-Read	20
			Fully Connected Crossbar	21
	2.5	Relate	ed Work	22
		2.5.1	Circuit-Switched PNoC Architectures	22
		2.5.2	Wavelength-Routed PNoC Architecture	24
		2.5.3	Other PNoC Architectures	25
	2.6	Chapt	ter Summary	25
3	Des	ign and	d Analysis of Hierarchical ONoC and PNoC Architectures	27
	3.1	Electro	o-Optical NoC Architecture	27
		3.1.1	Router Design	28
			Electronic Router Design	28
			Electro-optic Router Design	30
		3.1.2	Electro-optic Controller	31
			Packet Format and Size	32
			Dimension-Ordered-Routing (DOR-XY)	32
		3.1.3	Photonic Switch Design	33
	3.2	Optica	al and Photonic NoC Architectures	38
		3.2.1	Pros and Cons of Various Wavelength-Routed Architec-	
			tures	38
	3.3	Propo	sed Enhanced WDM-PNoC Architecture	39
		3.3.1	Network Architecture	39
		3.3.2	Dynamic Wavelength Allocation Protocol	40
			Token-Stream Based Waveguide Allocation	41
		3.3.3	Routing and Flow Control Techniques	42
			Flow Control	42
			Photonic Router Design	43
	3.4	Chapt	ter Summary	43

4	Proj	osed Simulation Setup	45
	4.1	PhoenixSim	46
		4.1.1 PhoenixSim Structure	47
		Processing Plane	47
		Network Plane	49
		IO Plane	50
		Results and Statistics	50
		4.1.2 Communication Stack	51
		4.1.3 Network Design	52
	4.2	Simulation Overview	52
		4.2.1 4x4 Electronic Mesh	54
		4.2.2 WDM-PNoC Gateway	55
		4.2.3 Performance Measures	56
	4.3	Modifications	57
5	Res	alts and Discussions	59
	5.1	IBM Blue Gene/q Compute Chip (A2PowerPC)	59
	5.2	Simulation Setup and Parameters	62
	5.3		63
	5.4	Simulation Results	64
		5.4.1 Comparison between ENoC and WDM-PNoC Architec-	
		tures	64
		5.4.2 Enhanced WDM-PNoC	68
	5.5	Summary	69
6	Con	clusion and Future Work	71
			71
			72
			72

Bibliography

73

List of Figures

1.1	Gate vs. interconnect delays	2
1.2	Energy cost of data movement relative to the cost of a flop for	
	current and 2018 systems	3
2.1	Functional diagram of an optical communication	8
2.2	Top view of a waveguide	9
2.3	Microring resonator functional characteristics	12
2.4	NoC direct topologies	13
2.5	PNoC Layers: Processing layer (bottom), electro-optic control	
	layer (middle), and photonic data layer (top)	14
2.6	Routing technique design space based on time, wavelength, and	
	space domains [13]	15
2.7	A Multiple-Write Single-Read wavelength architecture connected	
	to N nodes	19
2.8	A Single-Write Multiple-Read wavelength architecture connected	
	to N nodes	20
2.9	A wavelength crossbar connecting to N nodes	21
3.1	Structure of an electronic store-and-forward packet-switching	
	router	29
3.2	Structure of an electro-optical circuit-switching router	31
3.3	The basic design of a blocking 4x4 photonic switch	34
3.4	The original non-blocking 4x4 photonic switch	35
3.5	Various 4×4 non-blocking switch designs	37

3.6	A typical wavelength division multiplexed intra-chip photonic	
	link	38
3.7	The Proposed Photonic Crossbar NoC Architecture	40
3.8	Photonic Router	43
4.1	Module hierarchy using OMNeT++	46
4.2	Using PhoenixSim structure	47
4.3	The structure of processing plane	48
4.4	Electronic router structure in phoenixSim [52]	49
4.5	Logical organization of the statistics module	50
4.6	Communication stack	51
4.7	The NED editor in graphical editing mode	53
4.8	The NED editor in source editing mode	53
4.9	Form-based ini file editing.	54
4.10	The ini file source editor	54
4.11	4x4 Electronic mesh	55
4.12	Photonic gateway	56
4.13	Centralized arbiter	57
5.1	Layout of IBM Blue Gene/q compute chip (PowerPC A2)	60
5.2	The quad-pumped FPU in each A2 core	61
5.3	The proposed system architecture for PowerPC A2	62
5.4	Propagation delay.	64
5.5	Network latency under different message sizes and traffic load.	65
5.6	Network latency under E6 traffic load	66
5.7	Normalized energy consumption	67
5.8	Normalized energy consumption	69

List of Tables

3.1	Switch Design	36
5.1	Electronic hardware simulation parameters	63
5.2	Photonic hardware simulation parameters	63