Comparative Study Between Tissue Doppler Imaging and Radionuclide Scintigraphy in Evaluation of Right Ventricular Function in Patients with Chronic Obstructive Pulmonary Disease

Thesis submitted for partial fulfillment of Master Degree in Critical Care Medicine

Investigator

Marwa El-Sayed Abd El-Fattah, MBBCh

Supervisors

Dr. Shereen El-Gengehy, MD

Ass. Professor of Critical Care Medicine
Critical Care Medicine Department
Cairo University

Dr. Randa Alí, MD.

Lecturer of Critical Care Medicine
Critical Care Department
Cairo University

Dr. Sally Salah El-Dín, MD.

Lecturer of Critical Care Medicine
Critical Care Department
Cairo University

Cairo University

2009

Abstract

Background: Cor-pulmonale complicates 2-6/1000 of patients with chronic obstructive pulmonary disease (COPD). The early diagnosis of RV dysfunction 2ndry to pulmonary hypertension can reduce morbidity &mortality.

Aim of Work: The objective of our study is to assess the usefulness of tissue Doppler imaging (TDI) in evaluation of RV function in patients with COPD in comparison to first pass radionuclide angiography (FPRNA) which is the gold standard method. Another aim is to determine the relationship between lateral tricuspid annulus TDI parameters and PASP as estimated by continuous wave Doppler in patients with COPD.

Patients and Methods: Thirty patients with COPD diagnosed by history, clinical examination, CXR, laboratory findings (ABG, CBC), 12-lead ECG, TDI (to measure MPI, Sm, SmVTI, Em/Am), FPRNA (to measure RV EF)

Results: Based on the nuclear study (FPRNA) our 30 pts divided to 17pts (56.7%) with RVEF > 45% (55.2±1.4) and 13 pts (43.3%) with RVEF < 45% (37.7±6.2). From the 1st 17 pts, 15 pts showed by TDI, MPI < 0.7 (0.56±0.09) and Sm \geq 12 cm/s (15.3±1.7 cm/s) and 2 pts showed MPI \geq 0.7 Sm < 12 cm/s. From the 13 pts with RVEF < 45% (37.7±6.2) 12 pts exhibited by TTI MPI \geq 0.7 and Sm < 12cm/s (mean 0.83±0.05 and 9.7±1.07 cm/s respectively) and one pt exhibited normal MPI and Sm. Based on the relationship between PASP measured by continuous Doppler tricuspid valve and lateral tricuspid annular velocities Sm (13.7±2.9cm/s), SmVTI (2.2±0.7), Em/Am (0.6±0.2). The correlation was r = -0.61 for Sm, r = -0.72 for SmVTI and r = -0.60 for Em/Am. The results of TDI and FPRNA in evaluation of RV function compared to clinical signs of cor-pulmonale were P-value 0.001and 0.01 respectively. Also in our study we compared between diameter of RV measured by conventional echocardiography and result of TDI in evaluation of RV function where p-value = 0.01.

Conclusion: There is significant correlation between TDI and FPRNA in the ability to detect RV dysfunction in COPD pts by a sensitivity 92.3%, specificity 88.2% and P-value = 0.001. There is a good negative correlation between PSAP measured by continuous Doppler and later tricuspid annular velocity with P-value 0.001. There is a significant correlation between result of TDI and FPRNA in evaluation of RV function compared to clinical data signs of cor-pulmonale where P-value = 0.001 and 0.01 respectively. Also there is a significant correlation between results of TDI in evaluation of RV function and diameter of RV measured by conventional echocardiography where P-value = 0.01. TDI is considered a new, easy, bedside and less expensive technique in assessment of RVEF.

Key Words: Tissue Doppler Imaging, Peak Myocardial Systolic Velocities, Myocardial Performing Index, First Pass radionuclide Angiography, Chronic Obstructive Pulmonary Disease and Cor-Pulmonale.

Acknowledgement

For **ALLAH** the merciful, the compassionate, I kneel to express my gratitude for all the countless gifts I have been offered, including those who gave their hands to enable me to fulfill this work.

No words are sufficient to express my deep appreciation and profound gratitude to **Prof. Dr. Sherif Mokhtar** and **Prof. Dr. Hossam Mowafi,** Professors of Critical Care Medicine, for offering all their students an inspirational role model, for showing us the excitement and joy of critical care medicine, for their dedication to education and for their encouraging attitude and invaluable advice made it possible for any one to overcome even the most difficult obstacles in preparing the research. I am really honored to belong to the school of these scientists.

I would like to send my deepest gratitude to **Prof. Dr. Hassan Khaled,** Professor of Critical Care Medicine and Chief of Critical Care Medicine Department for his abundant and fruitful encouragement, continuous support to his students, for his kindness, for his nonstop effort and endless giving to the running the department in the best way possible so as to maximize its performance.

No words are sufficient to express my deep appreciation and profound gratitude to **Prof. Dr. Alia Abd El-Fattah,** Professor of critical care medicine, Cairo University for her abundant encouragement, continuous support and endless giving.

My true appreciation is to **Dr. Sherien El-Gengehy,** Assistant Professor of Critical Care Medicine for her meticulous supervision, for her kind guidance, valuable instructions and generous help. The time I worked under her supervision consolidated my knowledge, refined my experience and made me feel confident as a research student, because of the freedom she gives her students to express them selves no matter how inexperienced they might be. Thus, I really acknowledge that I consider my self lucky for ingoing the advantage of being supervised by such a great supervisor.

I would like to express my deep sense of gratitude to **Dr. Randa Ali Soliman**, Lecturer of Critical Care Medicine who had spared no effort in guiding me through out the long and tiring task of writing this thesis and performing the echocardiographic part. I am truly indepted to her with all what I learned and still learning in echocardiography.

I am deeply thankful to **Dr. Sally Salah El-Deen,** Lecturer of Critical Care Medicine for her great help, outstanding support and active participation, for her sympathy, kindness and constructive advice and for treating me in a brotherly way.

I wish to thank **Dr. Amr El-Hadidi, Assist. Prof. of Critical Care Medicine, Dr. Akram Abd El-Bary,** Lecturer of Critical Care Medicine, **Dr. Mohamed Khaled,** Lecturer of Critical Care Medicine, **and Dr. Mohamed Bakry**, Assist. Lecturer of Critical Care Medicine for their great efforts and important contributions.

Dr. Shaaban Abd El Hamid and all the Gamma Camera team, for their great efforts and important contributions.

I wish to thank deeply **Mrs.** Neveen Said, Critical Care Medicine Department for her patience and concentration in performing the computer work of this thesis.

Finally I am so thankful and honored to belong to the critical care medicine department, the land of imagination, innovation and fruitful research.

Contents

Introduct	ion	1	
Aim of The Work			
Review oj	f Literature		
Chapter I:	Chronic Obstructive Pulmonary Disease & Cor- Pulmonale	4	
Chapter II:	Tissue Doppler Imaging	26	
Chapter III:	Myocardial Perfusion Imaging And Radionuclide Angiography	50	
Pationts 8	& Methods	82	
_	x 5/10010005		
Results		90	
Discussion	n	114	
Summary	<i>/</i>	123	
Conclusio	ns	127	
Reference	2S	129	
Arabic Sı	ımmary	٤-١	

List of Abbreviations

2D-TDI : 2 dimentional tissue doppler imaging

4V² : Peak velocity at ricuspid regurgitant jet

5-HT : 5 – Hydroxy tryptamine

5-HTT : 5 - Hydroxy tryptamine transporter

ABG : Arterial blood gases

ACE : Angiotensin converting enzyme

AF : Atrial fibrillation

AVD : Atrioventricual delay

CAD : Coronary artery disease

cAMP : Cyclic adenosine monophosphate

CO : Cardiac output

COPD : Chronic obstructive pulmonary disease

CPs : Countrate per second

CRT : Cardiac resynchronization therapy

CXR : Chest X-ray

DMI : Doppler myocardial imaging

ECG : Electrocardiogram

ED : End diastole

EDV : End diastolic volume

EF : Ejection fraction

Em : Early diastolic wave

eNOS : Endothelial nitric oxide synthase

ES : End systole

ESV : End systolic volume

FEV1 : Forced expiratory volume / in 1st second

FPRNA: First pass radionuclide angiography

FVC : Forced vital capacity

GERNA : Gated equilibrium radionuclide angiography

HCO3 : Bicarbonate

IL-8: Interleukin – 8

IVCT: Isovolumetric contraction time

IVRT: Isovolumetric relaxation time

LA : Left atrium

LBBB : Left bundle branch block

LTB4 : Leukotriene B4

LV : Left ventricle

MAT : Multifocal atrial tachycardia

MI : Myocardial infarction

MM-TD: Corlor M-mode tissue doppler imaging

mPAP : Mean pulmonary artery pressure

MPI : Myocardial performance index

MVG : Myocardial velocity Gradient

PA : Pulmonary artery

PaCO2 : Arterial cabon diaoxide tension

PaO2 : Arterial oxygen tension

PASP : Pulmonary artery systolic pressure

PCWP: Pulmonary capillary wedge pressure

PE : Pulmonary embolism

PET : Positron emission tomography

PH : Pulmonary hypertension

PVCs: Premature ventricular contractions

PVR : Pripheral vascular resistance

PWP : Pulmnary wedge pressure

PW-TDI: Pulsed wave tissue doppler imaging

RA : Right atrium

RAO : Right anterior oblique

RAP : Right atrial pressure

RNV : Radionuclide angiography

RV : Right ventricular

RVEF : Right ventricular ejection fraction

RVMI: Right ventricular myocardial infarction

SaO2 : Arterial oxygen saturation

Sm : Peak myocardial systolic velocity

SPECT: Single photon emission computed tomography

SV : Stroke volume

SVC : Superior vena cava

SVO2 : Venous oxygen saturation

TC-99m : Technetium 99m

TDI : Tissue Doppler imaging

TNF- α : Tumor necoriss factor alfa

TR : Tricuspid regurge

VT : Ventricular tachycardia

List of Tables

Table No.	Title	Page
Table (1)	Hemodynamics at rest in 74 patients with advanced chronic obstructive pulmonary disease	10
Table (2)	: Basal and mid wall pulsed-wave tissue Doppler myocardial velocities	39
Table (3)	: Simultaneous first pass radionuclide angiography with myocardial perfusion scintigraphy: A diagnostic algorithm	74
Table (4)	: Shows mean and SD of ABG parameters on admission in the study group	92
Table (5)	: The mean and SD of pulsed wave tissue Doppler parameters for all pts.	94
Table (6)	: Shows No and percentage of patients with normal & impaired RV function detected by TDI & FPRNA.	96
Table (7)	: Shows the accuracy of TDI in evaluation of RV function in comparison of FPRNA in COPD patients.	97
Table (8)	: Shows the comparison between conventional echocardiography & TDI in assessment of Rt ventricular function.	99
Table (9)	: Shows a comparison between TDI & clinical data in assessment of Rt ventricular functions.	100
Table (10)	: Shows a comparison between Rt ventricular function assessed clinically and by FPRNA.	102
Table (11)	: Comparison between Rt. ventricular strain pattern and Rt ventricular systolic dysfunction by TDI.	103
Table (12)	: Comparison between Rt ventricular function by FPRNA & strain pattern by ECG.	105
Table (13)	: Shows mean & SD of Lateral tricuspid annular velocities.	106

List of Figures

Figure No.		Title	Page
Figure (1)	:	Section of a pulmonary arteriole from a patients with chronic obstructive pulmonary disease (COPD)	13
Figure (2)	:	Pathogenesis of cor pulmonale in COPD	14
Figure (3)	:	showing ECG demonstrate P pulmonale and RV strain pattern in COPD pt.	16
Figure (4)	:	Left: Principle of conventional Doppler. High amplitude myocardial wall signals are eliminated by high pass filter. Right: Doppler signals from myocardial wall are extracted, blood flow signals are eliminated	30
Figure (5)	:	Intramural orientation of myocardial fibers and three vectors of myocardial deformation	33
Figure (6)	:	frame rate pulsed Doppler myocardial imaging in a normal healthy individual for obtaining longitudinal tissue velocities from the septal corner of the mitral annulus.	35
Figure (7)	•	Short axis mean velocity data from the interventricular septum and posterior wall.	36
Figure (8)	:	Percentage of males & females in study group	90
Figure (9)	:	Demographic data	91
Figure (10)	:	Complications of COPD patients in the study group	93
Figure (11)	:	Blot figure shows the minimum, maximum and mean of tissue Doppler parameters	95
Figure (12)	:	Blot figure shows the minimum, maximum and mean of tissue Doppler parameters	95
Figure (13)	:	Shows the relation between TDI & FPRNA in assessment of Rt ventricular function in COPD patients.	97
Figure (14)	:	Shows the relation between (conventional echocardiograph) & TDI in assessment of RV function.	99

Figure No.		Title	Page
Figure (15)	:	Shows the relation between TDI & clinical data in evaluation of RV function.	101
Figure (16)	:	Shows the relation between FPRNA and clinical data in evaluation of Rt ventricular function.	102
Figure (17)	:	Shows the relation between Rt. Ventricular strain pattern ECG and Rt. Ventricular function by TDI.	104
Figure (18)	:	The relation between Rt ventricular function by FPRNA & strain pattern by ECG.	105
Figure (19)	:	Relationship between Em/Am and PASP	107
Figure (20)	:	Relationship between Sm and PASP	107
Figure (21)	:	Relationship between SMVTI and PASP	108
Figure (22)	:	Shows ECG with right axis deviation & RV strain pattern.	109
Figure (23)	:	Shows ECG with right bundle branch block	109
Figure (24)	:	Shows ECG with P pulmonale as marker of right atrium enlargement.	109
Figure (25)	:	Tissue Doppler imaging = Sm 12.8 cm/s, IVRT = 33 ms, IVCT = 54 ms, MPI = 0.4 (EJ = 220), SmVTI = 2.2 cm, Em/Am = 0.8 (pt. No. 20).	110
Figure (26)	:	Showing normal RVEF (50%) (pt. No. 20).	110
Figure (27)	:	Long axis parasternal view shows normal LV internal dimension & contractility and dilated RV = 3 / cm.	111
Figure (28)	:	Apical four chamber and parasternal short axis show dilated RV (pt. No. 26).	111
Figure (29)	:	Apical four chamber view shows continuous Doppler at tricuspid valve to estimate pulmonary artery pressure from tricuspid jet (Pt. No. 26)	112
Figure (30)	:	Tissue Doppler imaging = Sm 11.7 cm/s, IVCT = 75 ms, IVRT = 93 ms, ET = 177 ms, MPI = 0.9, SmVTI = 1.7, Em/Am = 0.3 (pt. No. 26).	112
Figure (31)	:	Showing Impaired RVEF (41%) (pt No. = 26).	113

Introduction

hronic obstructive pulmonary disease (COPD) is one of major causes of chronic morbidity & mortality throughout the world (1).

COPD is characterized by air flow limitation that is not fully reversible (1).

A diagnosis of COPD should be considered in any patients who have symptoms of cough, sputum production, dyspnea and / or a history as exposure to risk factors for the disease. The diagnosis is confirmed by spirometry (1).

One of the most common complications of COPD is corpulmonale. Corpulmonale is defined as an alteration in right ventricular structure & function due to parenchymal lung disease (2).

Severe pulmonary hypertension increase right ventricular after load & eventually lead to clinical syndrome of right heart failure with systemic congestion (3).

Two dimensional echocardiography is not feasible in assessment of ventricular function. addition right (RV) In dimensional two echocardiography doesn't provide haemodynamic information about right filling pressures, which can ventricular be derived echocardiography studies (4).

Tissue Doppler imaging TDI is an extension of conventional Doppler flow echocardiography & has been proven to be useful & feasible clinical tool for assessing systolic & diastolic function since its introduction in early 1990s (5, 6). Also, it recently has emerged as a new method useful for predicting right atrial pressure and evaluation of right ventricular systolic and diastolic function (7, 8, 9).

Radionuclide ventriculography (RNV) is considered the gold standard for estimating the right ventricular ejection fraction (RVEF). Abnormal RV function in patients with COPD has been demonstrated by both first-pass & gated blood pool scanning (10).

Aim of The Work

- The objective of our study is to assess the usefulness of tissue Doppler imaging TDI in evaluation of RV function in patients with chronic obstructive pulmonary disease in comparison to first pass radionuclide angiography FPRNA which is the gold standard method.
- To determine the relationship between tricuspid lateral annulus TDI parameters and PASP as estimated by continuous wave Doppler in patients with COPD.

Chapter I

Chronic Obstructive Pulmonary Disease & Cor Pulmonale

hronic obstructive pulmonary disease (COPD) is a major cause of chronic morbidity and mortality throughout the world. COPD is currently the fourth leading cause of death in the world, and further increases in the prevalence and mortality of the disease can be predicted in the coming decades. A unified international effort is required to reverse these trends (1).

Definition:

COPD is a disease state characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases (1).

A diagnosis of COPD should be considered in any patient who has symptoms of cough, sputum production, dyspnea, and /or a history of exposure to risk factors for the disease. The diagnosis is confirmed by spirometry. The presence of a post-bronchodilator $FEV_1 < 80\%$ of the predicted value in combination with an FEV_1 /FVC<70% confirm the presence of airflow limitation that is not fully reversible (1).

Classification of Severity:

A simple classification of disease severity into four stages is recommended. The management of COPD is largely symptom-driven, and there is only an imperfect relationship between the degree of airflow limitation and the presence of symptoms. The staging, therefore, is a pragmatic approach aimed at practical implementation and a very general indication of the approach to management. All FEV 1 values refer to post-bronchodilator effect (1).

Stage 0: At Risk:

Characterized by chronic cough and sputum production. Lung function, as measured by spirometry, is still normal.

Stage I: Mild COPD

Characterized by mild airflow limitation (FEV₁/FVC) < 70% but FEV₁> 80% predicted) and usually, but not always, by chronic cough and sputum production. At this stage, the individual may not even be aware that his or her lung function is abnormal.

Stage II: Moderate COPD

Characterized by worsening airflow limitation ($30 > \text{FEV}_1 < 80\%$ predicted) and usually the progression of symptoms, with shortness of breath typically developing on exertion. This is the stage at which patients typically seek medical attention because of dyspnea or an exacerbation of their disease.