Soluble Mesothelin-Related Peptide as a Marker of Response to Platinum-Based Chemotherapy in Malignant Pleural Mesothelioma

Thesis

Submitted for partial fulfillment of the M.D. Degree in Clinical Oncology and Nuclear Medicine

By Mohamed Sobhi Ali Ali

M.B., B.Ch; M.Sc. Faculty of Medicine - Ain Shams University

Supervised by

Dr./ Hesham Mahmoud Hassan Elwakeil

Prof. of Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

Dr./ Mohammad Sabry El-kady

Assistant Prof. of Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

Dr./ Walid Abd El Moniem Bayomy

Assistant Prof. of clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

Dr./ Mohamed Essam Salah

Lecturer of Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

Dr./ Wessam El Sayed Saad

Lecturer of Clinical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2017

سورة البقرة الأية: ٣٢

Acknowledgments

My thanks are submitted first and foremost to **ALLAH** Who gave me the strength and ability to complete this work.

I would like to express my thanks and appreciation to **Dr./ Hesham Mahmoud Hassan Elwakeil,** Prof. of Clinical Oncology and Nuclear Medicine, Faculty of Medicine - Ain Shams University, for his candid opinions, timely feedback, insights and the effort and time he has devoted to the fulfillment of this work. I am indebted to his meticulous follow-up and constructive criticism.

My sincere gratitude and appreciation are also due to **Dr./ Mohammad Sabry El-kady,** Assistant Prof. of Clinical Oncology and Nuclear Medicine, Faculty of Medicine - Ain Shams University, for his kind help, constant encouragement, constructive criticism, and the time and effort he dedicated to this work.

I can't forget to thank with all appreciation, Dr./ Walid Abd El Moniem Bayomy, Assistant Prof. of clinical Oncology and Nuclear Medicine, Faculty of Medicine - Ain Shams University, for the efforts and time he has devoted to accomplish this work.

I would like also to thank **Dr./ Mohamed Essam Salah,** Lecturer of Clinical Oncology and Nuclear Medicine, Faculty of Medicine - Ain Shams University, for his greate help and support.

I am really indebted to **Dr./ Wessam El Sayed Saad,** Lecturer of Clinical Pathology, Faculty of Medicine - Ain Shams University, for his valuable role in the practical part of this work.

Last but not least, this work is dedicated to all our **patients**, without them, this work would have been of no value, and also to my **colleagues**, for their support and care in every step of my career.

I can't forget to thank all members of my family, specially my **Parents,** my **Wife** and my **Son,** for pushing me forward in every step in the journey of my life.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	V
List of Figures	vii
Introduction	1
Aim of the Work	6
Review of Literature	
Epidemiology	7
Pathology	20
Diagnosis	42
Treatment	63
Patients and Methods	116
Results	126
Discussion	156
Summary and Conclusion	170
Recommendations	173
References	174
Arabic Summary	

List of Abbreviations

Abbr.	Full-term
ADA	: Adenosine deaminase
APC	: Antigen-presenting cell
ARD	: Asbestos-related disease
ARF	: Alternative reading frame gene
AS	: Argininosuccinate synthase
ASC	: Active symptom control
ASC	: Active symptom control
ASS1	: Argininosuccinate synthetase
BAP1	: BRCA associated protein 1
BTS	: British Thoracic Society Standards of Care Committee
CALGB	: Cancer and Leukemia Group B
CDKN2A	: Cyclin dependent kinase inhibitor 2A
CEA	: Carcinoembryonic antigen
CK	: Cytokeratins
CT	: Computed tomography
CTV	: Clinical target volumes
DCR	: Disease control rate
DVH	: Dose-volume histograms
EAP	: Extended Access Program
EBUS	: Endo-bronchial ultrasonography
EFEMP1	: Epidermal growth factor containing fibulin-like extracellular matrix protein 1
EMA	: Epithelial membrane antigen
EORTC	: European Organization for Research and Treatment of Cancer
EPP	: Extra pleural pneumonectomy
ERCC1	: Excision repair cross-complementing 1

FAK : Focal adhesion kinase

FDG : Fluorine182fluoro2deoxydglucose

FEV1 : Forced expiratory volume in 1 second

FGPS : Folypoly-c-glutamate synthetase **FISH** : Fluorescence in situ hybridization

FNA : Fine-needle aspiration

FR-a : Folate receptor a

HA : Hyaluronate

HCRT : Highly conformal RTHDACs : Histone deacetylaseHM : Human mesothilal

HSP90 : Heat shock protein S90

IALCS: International Association for the Study of Lung

Cancer

ICRU-83 : International Commission on Radiation Units and

Measurements Report 83

IGFR : Insulin growth factor receptor

IHC : Immunohistochemistry

IMIG : International Mesothelioma Interest Group

IMRT : Intensity-modulated RT

LATS2 : Large tumor suppressor 2 gene

MARS1 : Mesothelioma and Radical Surgery 1
 MARS2 : Mesothelioma and Radical Surgery 2
 MHC : Major histocompatibility complex

MLD : Mean lung dose

mOS : Median Overall survival

mPFS : Median progression free survivalMPM : Malignant pleural mesotheliomaMRI : Magnetic resonance imaging

MRI : Magnetic resonance imaging

mTOR : Mammalian target of rapamycin

MVP : Mitomycin, vinblastine, and cisplatin

NCCN: The National Comprehensive Cancer Network

NCI : National Cancer Institute NF2 : Neurofibromatosis type 2

NF2 : Neurofibromatosis type 2 gene

NSABP : National Surgical Adjuvant Breast Project

NSCLC : Non-small-cell lung cancer

OPN : Osteopontin

OS : Overall survival

P/D : Pleurectomy/decorticationPDGF : Platelet derived growth factor

PDGFR : Platelet derived growth factor receptor

PFTs : Pulmonary function tests
PI3K : Phosphoinositide3kinase

PS : Performance status

PTV : Planning target volume
QALY : Quality-adjusted life years

RECIST: Response evaluation criteria in solid tumor

RRM1 : Ribonucleotide reductase M1

RT : Radiation therapy

RT : Radiotherapy

SEER : Surveillance, Epidemiology and results

SMRP : Serum mesothelin-related peptide

SUV : Standard uptake value SUV : Standarduptake value

SV-40 : Simian virus-40
TCR : T-cell receptor

TGFb : Transforming growth factor b

TK : Tyrosine kinase

TS : Thymidylate synthase

TTF-1 : Thyroid transcription factor 1

UICC: Union for International Cancer Control

VAT : Video-assisted thoracoscopyVATS : Video-assisted thoracic surgery

VEGF : Vascular endothelial growth factor

VEGFR : Vascular endothelial growth factor receptor

WHO : World HealthOrganizationWT-1 : Wilms' tumor antigen 1

3DCRT : 3D conformal RT

List of Tables

Eable N	o. Eitle	Page '	No.
Table (1):	Immunohistochemical Markers discriminating between Epithelial MP adenocarcinoma Metastatic Pleural Tum	M and	26
Table (2):	Possible diagnostic MPM biomarkers location, sensitivity and specificity		41
Table (3):	TNM staging according to the International Interest Group (IMIG)/ UnInternational Cancer Control (UICC)	nion for	54
Table (4):	Response Evaluation assessment in Tumors (RECIST)		57
Table (5):	Poor prognostic features in mult analysis		61
Table (6):	EORTC prognostic survival in low ar risk groups	_	62
Table (7):	The efficacy of two phase III trials re the first-line with locally advanced patients	MPM	79
Table (8):	Patients' characteristics	•••••	127
Table (9): R	Response rate after 3 cycle chemotherapy		129
Table (10):	Levels of SMRP before and chemotherapy		130
Table (11):	Relative and absolute changes of SMRF and after chemotherapy		130
Table (12):	Statistical comparison of SMRP levels of in different response groups	_	131
Table (13):	Statistical analysis of % change of SM different response groups at a cut-off 10 %		136

Table (14):	Descriptive analysis of % changes of SMRP in different response groups
Table (15):	Comparative analysis of absolute difference of SMRP in different response groups at cutoff 10th percentile
Table (16):	Comparative analysis between SMRP levels before and after chemotherapy VS % changes in three different groups
Table (17):	Descriptive comparative analysis of Overall Survival
Table (18):	Mean OS in different response group 148
Table (19):	Descriptive & Comparative of Progression free survival results
Table (20):	Comparative analysis between PFS and % change of SMRP
Table (21):	Comparative analysis of mean PFS in different response group
Table (22):	Comparison between type of treatment regimen and both % change of SMRP and absolute difference of SMRP
Table (23):	Comparative analysis of type of treatment regimen in different response groups
Table (24):	Comparative analysis type of treatment regimen in both PFS and OS

List of Figures

Figure No	v. Eitle	Page V	lo.
Figure (1):	Incidence rates of MPM in Europe		8
Figure (2):	Map of Greater Cairo. Industrial areas polluted with asbestos	•	. 10
Figure (3):	Possible Pathogenesis of asbestos fi MPM		. 17
Figure (4):	Multiple Pathways involved in pathogenesis. P, phosphorylation		. 19
Figure (5):	Epithelial type of MPM with tubulo-p growth pattern		. 23
Figure (6):	Sarcomatoid type of MPM surroundin wall fat	-	. 23
Figure (7):	Biphasic type of MPM. Malignant epcells surrounded by neoplastic spindle c		. 24
Figure (8):	Pleural effusion cytology: positive castain in MPM		. 27
Figure (9):	Strong cytoplasmic positivity for kerati		. 28
Figure (10):	Positive Podoplanin staining along the cell membrane in MPM	•	. 29
Figure (11): 1	Mesothelioma pleural mesothelioma dis nuclear positivity for WT1 protein		. 30
Figure (12):	MPM showing strong membranous refor mesothelin	•	. 31
Figure (13):	Chest radiograph showing left-sided lov opacity in MPM		. 44

Figure (14):	Chest computed tomography of left side MPM. Red bars measure the thickness of disease
Figure (15):	MRI abdomen showing right-sided MPM 47
Figure (16):	(a) and (b) Fused 18F-FDG images in advanced epithelial type of MPM, with left supraclavicular lymph node, mediastinal nodes, and intra-abdominal extension
Figure (17):	Many thoracoscopic images of MPM 52
Figure (18):	Correlation between clinical and pathological staging in MPM
Figure (19):	Median Survival following surgery for MPM 59
Figure (20):	Malignant Pleural mesothelioma survival based upon histological subtypes
Figure (21):	Stimulatory / Inhibitory co-receptors regulate T-cell reactions toward tumor antigens
Figure (22):	Percentage of response rate in different group: 129
Figure (23):	Relative and absolute changes of SMRP levels in different response groups
Figure (24):	ROC curve analysis between partial response and progressive disease predicting partial response group
Figure (25):	ROC curve analysis between partial response and stable disease predicting partial response group
Figure (26):	ROC curve analysis between stable disease and progressive disease predicting stable disease group
Figure (27):	Percent change of SMRP levels in different response group at a cut-off of 10 %
Figure (28):	Bar chart showing percentage changes of SMRP in different response groups

• , ,	Absolute change of SMRP in different response group at a cut-off 10th percentile	138
Figure (30):	SMRP levels after 3 cycles chemotherapy and % changes in three different group	140
Figure (31):	ROC curve between patients with decreased SMRP ≥ 10 % and those with SMRP decreased < 10 %	140
Figure (32):	ROC curve between patients who decreased SMRP $\geq 10\%$ and those with SMRP increased $\geq 10\%$	141
Figure (33):	Overall survival curves. Estimated with the Kaplan-Meier, for ECOG.	142
Figure (34):	Overall survival curves. Estimated with the Kaplan-Meier, for type of pathology	143
Figure (35):	Median OS of percentage change of SMRP	144
Figure (36):	Overall survival curves. Estimated with the Kaplan-Meier, for percentage change of SMRP.	144
Figure (37):	Overall survival curves. Estimated with the Kaplan-Meier, for absolute change of SMRP from baseline	145
Figure (38):	Overall survival curves. Estimated with the Kaplan-Meier, for different response groups	146
Figure (39):	Overall survival curves. Estimated with the Kaplan-Meier, for lymph node status	146
Figure (40):	Overall survival curves. Estimated with the Kaplan-Meier, for type of chemotherapy regimen.	147
Figure (41):	Mean OS in different response group	147
Figure (42):	Progression free survival curves. Estimated with the Kaplan-Meier, for sex.	150

List of Figures

Figure (43): Median PFS in different percentage change of	
SMRP groups	151
Figure (44): Mean PFS in different response group	151
Figure (45): Outcome in % change of SMRP groups	152
Figure (46): Outcome in different response groups	153

Abstract

In malignant pleura mesothelioma (MPM), radiologic assessment of disease status is confusing soluble mesothelin-related peptide (SMRP) has utility in distinguishing MPM from benign pleural disease. We evaluated SMRP as predictive marker in relation to the disease course of MPM.

Patients and Methods: Serial plasma samples from patients with unresectable stage IV MPM were prospectively collected before starting and after finishing 3 cycles of platinum-based pemetrexed regimen. SMRP levels were measured. Radiologic assessment by modified resist criteria across time showing disease progression, stability, or shrinkage were compared with corresponding changes in SMRP levels.

Results: From 40 patients (female: 16; male: 24), 80 samples were collected. At study entry, all patients had measurable disease and SMRP level in 40 patients showed that the median SMRP was 0.32 ng/ml (IQR = 0.25-1.01) before chemotherapy) and the median SMRP was 0.29 ng/ml (IQR = 0.2-0.86) after 3 cycle chemotherapy. Percentage change in SMRP more than 10% correlated with the radiologic assessment (P.001) by modified RECIST (P.001). SMRP level of all partial response group decreased \geq 10% from baseline level and SMRP level of all progressive decease group increased \geq 10% from baseline level. No significant difference was observed between the absolute difference of SMRP and different response groups (P0.227). In addition, Percentage change in SMRP had a significant effect on both OS (P0.013) and PFS (P0.023).

Conclusion: Percentage changes rather than absolute change of SMRP levels, are a potentially useful predictive marker of disease course. These findings should be validated prospectively for a role as an objective adjunctive measure of disease course in both clinical trials and clinical practice.

Keywords: Malignant pleural mesothelioma (MPM), Soluble Mesothelin-Related Peptides (SMRP), overall survival (OS), progression free survival (PFS).