

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

BIOCHEMICAL AND PHYSIOLOGICAL STUDIES ON THE TOXICITY OF SOME FOOD CONTAMINANTS IN EXPERIMENTAL ANIMALS

2200

THESIS

Submitted in partial fulfillment for the requirement of Ph.D. Degree in Zoology

"PHYSIOLOGY"

By

BAHAA EL-DIN KAMAL MOHAMED EL-FIKY

M.Sc. Zoology

ZOOLOGY DEPARTMENT FACULTY OF SCIENCE TANTA UNIVERSITY 1996

- 29

595,42 060

. .

. .

BIOCHEMICAL AND PHYSIOLOGICAL STUDIES ON THE TOXICITY OF SOME FOOD CONTAMINANTS IN EXPERIMENTAL ANIMALS

THESIS

Submitted in partial fulfillment for the requirement of Ph.D. Degree in Zoology
"PHYSIOLOGY"

By

BAHAA EL-DIN KAMAL MOHAMED EL-FIKY M.Sc. Zoology

> ZOOLOGY DEPARTMENT FACULTY OF SCIENCE TANTA UNIVERSITY 1996

SUPERVISORS

Dr. MERVEET A. MANSOUR

Professor of Physiology Faculty of Science Tanta University

Dr. ISMAIL M. EL-SHARKAWI

Ass. Prof. of Physiology Faculty of Science Tanta University

Dr. MOHAMED A. BASSIOUNY

Lecturer of Physiology Faculty of Science Tanta University

ACKNOWLEDGEMENT

I wish to convey my sincere appreciation and everlasting gratitude to **Dr. MERVAT A. MANSOUR**, Professor of physiology, Faculty of Science, Tanta University, for her experienced guidance and continuous encouragement.

Thankfulness and sincere indebtedness are extended to **Dr. ISMAIL M. EL-SHARKAWI**, Asst. Professor of Physiology, Faculty of Science, Tanta University, for suggesting and planning the present work. His sincere advice, encouragement and guidance throughout this work have been unlimited.

I wish to record my sincere thanks and appreciation to **Dr. MOHAMED A. BASSIOUNY**, Lecturer of Physiology, Faculty of Science, Tanta University, for his help and guidance throughout this work.

CURRICULUM VITAE

Full name : Bahaa El-Din Kamal Mohamed El-Fiky

Date of Birth : 27/10/1956

Nationality : Egyptian

Locality : Tanta

Primary School : El-Embaby mixed primary school, Tanta

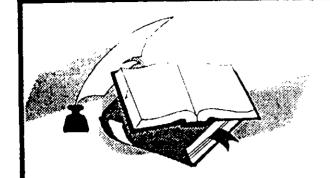
Preparatory School : Said El-Erian preparatory school, Tanta

Secondary School : Tanta Secondary school for boys, Tanta

University : Tanta University, Faculty of Science

M. Sc. Degree : Tanta University, Faculty of Science

Present Post : Health laboratories, Tanta


Permanent Address : El-Helw cross El-Metawakel St., Tanta

Baymin

CONTENTS

F	age		
CHAPTER I: INTRODUCTION	1		
CHAPTER II: REVIEW OF LITERATURE	ı		
1- Food contamination and trace elements			
2- Permitted limits of trace elements in the food products	4		
2- Permitted limits of trace elements in the food products	2		
3- Source of food contamination	6		
5- Intestinal absorption of sugars and amino acids	11		
6- Impact of trace elements on intestinal absorption of sugars and amino acids	14		
7- Toxic effects of trace elements	16		
7 1) Toxic effects following copper poisoning	20		
7.1) Toxic effects following copper poisoning	21		
7.2) Toxic effects following zinc poisoning	24		
7.3) Toxic effects following arsenic poisoning	26		
7.4) Toxic effects following lead poisoning			
7.5) Toxic effects following mercury poisoning			
7.6) Toxic effects following tin poisoning	31		
CHAPTER III : MATERIALS AND METHODS			
1- Experimental animals	32		
2- Trace elements used	32		
3- The experimental design and bioassays	32		
Experiment 1: Analytical survey of the contamination of the food products			
collected from the local market in Tanta city with the			
trace elements	33		
Experiment 2: Determination of the impact of trace elements on the intestinal			
absorption of sugars	33		
Experiment 3: Determination of the impact of trace elements on the intestinal			
absorption of L-tyrosine	34		
Experiment 4: Determination of the residual effects of trace elements on			
both the intestinal digestive activity and pancreatic and			
hepatic functions	35		
4- Appendix for methods and techniques used	36		
4.1) Preparation of food products for metal analysis by atomic absorption			
spectrophotometry	36		
4.2) Method of Suda and Ueda (1963) for in vivo determination of the rate			
of intestinal absorption of glucose or L-tyrosine	38		
4.3) Method of Folin and Wu (1920) modified by Nath (1976) for			
determination of glucose concentration in the perfusate solution	40		
4.4) Method of Moore and Steine (1951) for determination of amino acid			
concentration in the perfusate solution	45		
4.5) Method of preparation of blood serum	47		

	4.6)	Method of Mayer's haematoxylin (1903) for histopathological		
		preparations	47	
	4.7)	Preparation of tissue homogenate	47	
	4.8)	Method of Lowry et al. (1951) for determination of total proteins	48	
	4.9)	Method of Dahlqvist (1968) for determination of disaccharidase		
	ŕ	activities in intestinal tissue homogenate	49	
	4.10)	-		
		activity	52	
,	4.11)			
	,	•	57	
	4.12)	Method of Reitman and Frankel (1957) for determination of aspartate	•	
		and alanine aminotransferases activities	58	
	4.13)	Method of El-Aaser and Merzabani (1975) for determination of	50	
	,	5'-nucleotidase activity	63	
	4 14)	Statistical analysis of the data		
	****	orange analysis of the data	UT	
CHAPTEI	R IV .	RESULTS		
•		ace element contents of the food products collected from the local		
		in Tanta city and the percentage of their contamination	66	
		· · · · · · · · · · · · · · · · · · ·		
		space of trace elements on the <i>in vivo</i> intestinal absorption of	13	
			79	
	•	al adverse effects ensuing ingestion of one oral dose equivalent to 1/10	17	
		•	86	
		diverse effects of copper		
		diverse effects of zinc		
		diverse effects of arsenic	103	
		diverse effects of lead	112	
		diverse effects of tin	120	
		dverse effects of mercury	120	
		al histopathological changes of the trace elements on the intestine	120	
		• •	127	
à		er		
		Effect of trace elements on the histology of the liver		
	3.2-	Effect of trace elements on the histology of the fiver	1-4-4	
CUADTE	D 37 •	DISCUSSION		
		idence of trace elements in food products	150	
		of the trace elements on the intestinal absorption of glucose and	150	
		ine	154	
	·			
		of the trace elements on liver function	162 165	
4- 13	meet o	bic date elements on liver function	105	
CHAPTEI	D VI •	SUMMARY	170	
CHAI IEI	. ¥1 ;	OUMINITERED,,,,,,,	110	
СНУБТЕТ	R VIII.	REFERENCES	177	
CHAI LEI	. V 114	MI DAGICES	.,,	
ARARIC	SHMN	MARY		

INTRODUCTION

INTRODUCTION

In Egypt, food production is an objective that takes a great deal of concern. Food industrialization has taken a considerable place on the map of investment projects and plans of development since 1970s. However, with the widespread in such industries, there is an increased likelihood for contamination of food products as a result of either inappropriate canning or the use of impure or low quality ingredient of food additives such as colouring matters, preservatives, flavours, sweetner and antioxidants.

In a study done in our laboratory over three years started from 1989 up to 1991, El-Fiky (1992) evaluated the distribution of a category of food contaminants, namely non-permitted food colouring materials in the food products sold in the local markets in Tanta city. Out of 1589 food products analysed by chromatographic analysis, the author found that four non-permitted food dyes, recognized as injurious to health by the Food and Drug Administration (FAD), were frequently encountered in the food samples collected. The non-permitted food dyes detected were: amaranth, rhodamine-B, orange-II and orange-IV. The total percentages of incidence were found to be 9.4% in 1989, 1.9% in