The Role of MRI Imaging in Evaluation of Ano-Rectal Malformations

Essay

Submitted in Partial Fulfillment For Master Degree In Radiodiagnosis

Submitted by

Ahmed Mohamed Mostafa

[M.B., B.CH; Cairo University]

Supervised by

Prof. Dr. Hassan Ali Hassan El-Kiki
Professor of Radiodiagnosis
Faculty of Medicine
Cairo University

Dr. Ayman Abdel Hamid El-Basmy
Lecturer of Radiodiagnosis
Faculty of Medicine
Cairo University

Dr. Noha Hosam El Din Behairy
Lecturer of Radiodiagnosis
Faculty of Medicine

Cairo University
Faculty of Medicine
Cairo University
2009

<u>Acknowledgement</u>

First and foremost, thanks to **God**, to whom I relate any success in achieving any work in my life.

I would like to express my deepest gratitude and extreme appreciation to **Professor Dr. Hassan Ali Hassan El-Kiki**, Professor of Radiodiagnosis, Faculty of Medicine, Cairo University for his kind supervision, kind advice, constructive encouragement, generous help and guidance through the whole work which could not be a fact, without his guidance and kind help.

I also extend my gratitude to **Dr. Ayman Abdel Hamid El-Basmy**, Lecturer of Radiodiagnosis, Faculty of Medicine, Kasr El Aini Hospital, Cairo University for his continuous support and meticulous supervision of this work.

I would like to thank **Dr. Noha Hosam El Din Behairy,**Lecturer of Radiodiagnosis, Faculty of Medicine, Kasr El Aini Hospital,
Cairo University for her kind assistance and support.

I would like to express my respect, appreciation and thanks for my **family** for their assistance, encouragement and their pray for me.

Words cannot express my appreciation to **my wife** for her loving guidance, kind care and support throughout my life.

Ahmed Mohamed Mostafa

Abstract

MRI is the imaging technique of choice for the global assessment of anorectal malformations. The capability of global visualization of all pelvic floor muscles and its musculofascial support structures make the MRI examination is essential in preoperative assessment for all cases with anorectal malformation in order to plane a good strategy for the reconstructive surgery as well as in assessment of post-operative outcome.

Keyword MRI – Anorectal malformation

List of contents

Introduction and aim of the work 1		
Review of literature:		
Embryology	4	
Anatomy of the Pelvic Floor and Perineum		
Physiology and Mechanism of Defecation and Continence	31	
Static MR Imaging of Normal Musculature		
Dynamic MRI Imaging of The Pelvic Floor	41	
Anorectal Malformation: Morphology and MRI Imaging	44	
Different Imaging Modalities of ARM	58	
Surgical Techniques and Post-Operative Complications	69	
Pre- and Post-operative MRI assessment of ARM		
Summary	112	
References	114	
Arabic Summary.		

List of abbreviation

ARA	Anorectal Angle
ARJ	Anorectal Junction
ARM	Ano-Rectal Malformation
ASD	Atrio-Septal Defect
ATFP	Arcus Tendineus Fascia Pelvis
ATLA	Arcus Tendineus Levator Ani
CT	Computed Tomography
EAS	External Anal Sphincter
ES	External Sphincter
FSE	Fast Spin-Echo
GRE	Gradient-Echo
I	Ischial
IAS	Ischio-Anal Space
IS	Internal Sphincter
LA	Levator Ani
MCUG	Micturating Cystourethrography
ml	Millilitre
mm	Millimetre
MRI	Magnetic Resonance Imaging
PCL	Pubo-Coccygeal Line

PRM	Puborectalis Muscle
PSARP	Posterior Sagittal Anorectoplasty
R	Rectum
SSFSE	Single-Shot Fast Spin Echo
TE	Echo Time
TR	Repetition Time
U	Urethra
UB	Urinary Bladder
UG	Urogenital
US	Ultrasound
VSD	Ventricluo-Septal Defect

List of figures

Figure	Description	Page Number
Figure 1	Implantation site at the end of the second week.	5
Figure 2	Cross section through the cranial region of the streak at 15 days, showing invagination of epiblast cells.	5
Figure 3	Sagittal section through embryo with seven somites, demonstrating the effect of cephalo-caudal and lateral folding.	6
Figure 4	Embryo showing the primitive gastrointestinal tract.	8
Figure 5	Division of the cloaca into the urogenital sinus and anorectal canal.	9
Figure 6	The pelvic cavity.	11
Figure 7	The bony pelvis.	12
Figure 8	Pelvic diaphragm.	15
Figure 9	Puborectalis muscle.	19
Figure 10	Pelvic diaphragm.	18
Figure 11	Rectum and anal canal.	21
Figure 12	Diagram illustrating the triple-loop system of the external anal sphincter.	23
Figure 13	Anal canal.	24
Figure 14	Rectum and anal canal.	26
Figure 15	Ischioanal fossae and Pelvic diaphragm.	29
Figure 16	Male pelvis.	30
Figure 17	Female pelvis.	30
Figure 18	External and internal sphincters at rest and during defecation.	32

Figure 19	Mechanism of voluntary inhibition reflex.	33
Figure 20	Mechanism of anal occlusion by the mechanical compression of the triple loop system of the external anal sphincter.	34
Figure 21	Diagram illustrating the "individual" sphincter arising from the puborectalis which act as a "common" sphincter for the inrahiatal structures.	35
Figure 22	Mechanism of defecation.	36
Figure 23	Trans-axial MR images of the pelvic floor from a healthy boy.	38
Figure 24	Coronal MR images of the pelvic floor from a healthy boy.	39
Figure 25	Coronal MR images of the pelvic floor from a healthy boy.	40
Figure 26	Dynamic MR images showing normal pelvic floor movements.	43
Figure 27	Sagittal and coronal MR images showing associated anomalis with ARM.	46
Figure 28	Sagittal T1-weighted image and axial T2-weighted image in a girl, 8 months of age, with a Currarino triad.	47
Figure 29	Sagittal schematic representations of the caudal region of a human embryo just before rupture of the cloacal membrane.	49
Figure 30	Axial T1-weighted image in a 3-month-old girl showing an ectopic anterior location of the anal canal.	51
Figure 31	Sagittal schematic representations of the caudal region of a human embryo just before rupture of the cloacal membrane.	52
Figure 32	A .Flat perineum associated with a high anomaly. B. Meconium at the urethral meatus, demonstrating presence of a fistula.	56
Figure 33	Prone, cross-table lateral radiograph of a pelvis demonstrating the pubococcygeal (PC) line and the ischial (I) line.	59
Figure 34	Pressure-augmented colostogram. (A) demonstrates the nipple arising from the terminal colon.(B), a rectoprostatic urethral fistula is demonstrated.	61
Figure 35	A) Retrograde urethrogram demonstrating a rectoprostatic urethral fistula.	62

	B) Micturating cystourethrogram demonstrating a rectoprostatic urethral fistula.	
Figure 36	Cloacagram in a 2-day-old female, demonstrating a common channel with contrast in the vagina and rectum.	64
Figure 37	sinugram in 3-month-old female demonstrating passage of contrast from the vagina into the rectum via a perineal canal.	64
Figure 38	Infracoccygeal ultrasonogram demonstrating the levator ani in a normal child.	65
Figure 39	Transverse infracoccygeal sonogram showing low-type imperforate anus.	66
Figure 40	Transverse infracoccygeal sonogram shows the distal rectal pouch.	66
Figure 41	CT scan of rectourethral fistula showing poor development of the puborectal muscle and sphincter muscles.	67
Figure 42	CT scans show cloacal type of anomaly.	68
Figure 43	Coronal reconstruction of a computed tomography examination of the pelvis demonstrating the pelvic floor musculature.	68
Figure 44	Photograph showing Surgical techniques.	70
Figure 45	An artistic drawing of a cloacal malformation.	71
Figure 46	Four patients with cloacal malformations.	72
Figure 47	Sagittal T2-weighted image in a 2-year-old girl with cloacal deformity (high type).	73
Figure 48	Coronal T2-weighted image and axial T1-weighted image in a girl, 8.5 months of age, with a cloacal malformation.	74
Figure 49	Sagittal and coronal T1-weighted images in a boy 1.7 years of age, with a high anorectal malformation and recto-prostatic urethral fistula.	78
Figure 50	Sagittal FSE T2-weighted image in a girl, 2.5 months of age, with a low anorectal malformation	79
Figure 51	A) Axial image at the level of the ischial rami showing an ectopic location of the anal canal.B) Axial image in a girl, 2.5 months of age, with a low anorectal malformation showing an ectopic anterior location of the anal canal.	80

Figure 52	A) Sagittal FSE T2-weighted image in a boy, 1 year of age, with a high anorectal malformation. B) Sagittal FSE T2-weightted image in a 9-month-old boy with a high ARM, and a rectourethral fistula.	81
Figure 53	A,B. Axial and coronal FSE T2-weighted images in a healthy man, demonstrating the normal MR anatomy of the pelvic floor musculature.	83
Figure 54	A,B. Axial SE T1-weighted images in a boy 2 years of age, after reconstructive surgery for a high anorectal malformation.	84
Figure 55	SE T1-weighted image in a boy 2 years of age, after reconstructive surgery for a high anorectal malformation.	85
Figure 56	Example of the measurement of the anorectal angle on a sagittal MRI image.	86
Figure 57	MR images for a patient with an intermediate malformation. a. Axial MRI image through the ischial rami showing a normally developed EAS muscle. b. Axial MRI image through the symphysis pubis showing a normally developed PRM. c. Coronal MRI image showing a normally developed levator hammock. d. Sagittal MRI showing an anorectal angle of approximately 95 degree.	89
Figure 58	 MR images for a patient with a low malformation. a. Axial MRI image showing fair development of the puborectalis muscle. b. Sagittal MRI image showing an anorectal angle of approximately 110 degree. 	90
Figure 59	MR images for a patient with a high malformation. a, b. Axial MRI images showing normal development of the EAS and PRM. c. Sagittal MRI image showing a wide anorectal angle approximately 136 degree.	91
Figure 60	Sagittal SE T1-weighted image in a 13-year-old boy with complete incontinence after reconstructive surgery for a high imperforate anus.	92
Figure 61	Photograph showing endoluminal coils.	94
Figure 62	Axial T2-weighted turbo spin-echo endo-anal MR images and corresponding drawings showing	97

	normal anatomy of the anal sphincters.	
Figure 63	Coronal T2-weighted turbo spin-echo endo-anal MR images and corresponding drawings showing normal anatomy of the anal sphincters.	99
Figure 64	Sagittal T2-weighted turbo spin-echo endo-anal MR images and corresponding drawings showing normal anatomy of the anal sphincters.	101
Figure 65	a-d .Axial proton-density-weighted ,Coronal and mid-sagittal T2-weighted turbo spin-echo MR images showing Endoanal MR Images signal pattern	103 104
Figure 66	Transverse and coronal T2 weighted endoanal MR images showing focal sphincter deficiency in 2-year-old boy after posterior sagittal anorectoplasty	106
Figure 67	Transverse and coronal T1 weighted endoanal MR images showing focal sphincter deficiency in 10-month-old girl after pull-through perineoplasty.	108
Figure 68	Transverse and coronal T1 weighted endoanal MR images showing circumferential inferior scar in 6 year old boy after pull-through perineoplasty.	109
Figure 69	Sagittal T2-weighted FSE endoanal MR image showing Ano-vaginal fistula in 3-year-old girl after posterior sagittal anorectoplasty	110
Figure 70	Transverse and coronal T1 weighted endoanal MR images showing pelvic floor deficiency in 3-year-old girl	111

List of tables

Table	Description	Page Number
Table 1	"Wingspread" Classification of Anorectal Malformation	45
Table 2	Associated anomalies most commonly involved in anorectal malformation	47
Table 3	New Classification of Anorectal Malformations	54
Table 4	Summary of patients and MRI findings in a study done by Fukuya et al, 1993	87
Table 5	Kelly's clinical score of incontinence	88

INTRODUCTION

Anorectal malformations comprise a wide spectrum of disease affecting males and females and can involve malformations of the distal anus and rectum, as well as the urinary and genital tracts. Malformations range from minor easily treated defects that have an excellent functional prognosis to complex defects that are difficult to manage, often associated with other anomalies, and have a poor functional prognosis (*Levitt and Pena*, 2006).

Anorectal malformations occur in approximately 1 in 5000 live births. Visualization of the anatomy allowed surgeons to eliminate many previous misconceptions. For instance, the previous classification of these defects into high, intermediate, and low malformations was a misleading oversimplification that did not adequately demonstrate the spectrum of anorectal anomalies (*Levitt and Pena*, 2006).

Pelvic floor anatomy and function, especially in patients with congenital malformations, such as anorectal malformations (ARMs), bladder exstrophy (BE), and cloacal exstrophy (CE), are often very complex (*Boemers et al*, 2006).

Diagnosis and early management has been refined by more thorough knowledge of the anatomy and physiology of the pelvic structures at birth. Analysis of large series of patients allows better prediction of associated anomalies and functional prognosis (*Levitt and Pena*, 2006).

Initial descriptions of the normal anatomic features of the anal canal were based on dissection studies and observations during surgery. Introduction of MRI imaging techniques opened new possibilities for evaluation of the pelvic structures (*Rociu et al*, 2000).

MRI is an imaging technique for the global assessment of pelvic floor disorders. The capability of global visualization of all pelvic compartments and pelvic floor muscles, the enhanced tissue resolution of the pelvic organs, and its musculofascial support structures reinforced the interest of this method in the assessment of anorectal malformations (*Wefer et al*, 2002).

Despite surgical correction of complex urogenital and ARMs, patients may still present with urinary and fecal incontinence or constipation. The reasons for incontinence or constipation may be structural or functional or a combination of both (*Fritsch et al, 1999*).

To better differentiate these different aspects, dynamic MRI of the pelvic floor can be very helpful to delineate not only anatomy but also the function of the continence organs. In these cases, the structure, quality, and function of the levator plate and the anal sphincter complex are of special interest for the pediatric surgeon. In managing incontinence in these patients, there is interest to define the puborectalis muscle as a part of the sphincter complex (*Boemers et al, 2006*).

Compared with other techniques, the advantage of MRI is its superior soft tissue resolution and the global view of different pelvic compartments without ionization radiation. Furthermore, information regarding the function of pelvic floor muscles and organs during different actions (rest, stretch, squeeze, evacuation) is obtained in the growing cooperative child. Especially in the growing child, the absence of ionizing radiation is of utmost importance (*Boemers et al*, 2006).

AIM OF WORK

The aim of this work is to highlights the role of MRI studies in evaluation of anorectal malformations prior to surgery as well as the assessment of the surgical outcome.