

Radiation-induced synthesis and characterization of some nanocomposites and their applications

A Thesis

Submitted for PhD. Degree of Science in Chemistry (Organic Chemistry)

By

Rehab Sokary Sayed Mostafa El-Sokary (M.Sc. Chemistry 2012)

To

Chemistry Department
Faculty of Science
Ain Shams University

A Thesis Title

Radiation-induced synthesis and characterization of some nanocomposites and their applications

Researcher Name:

Rehab Sokary Sayed Mostafa El-Sokary

Supervisors

Ass. Prof. Dr. / Gamal Abdel Aziz Meligi

Ass. Prof. of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University

Prof. Dr./ Zakaria Ismaiel Ali

Prof. and Head of Radiation Chemistry, National Center for Radiation Research and Technology, Atomic Energy Authority

Ass. Prof. Dr./ Hoda Hanafi Saleh

Ass. Prof. of Radiation Chemistry, National Center for Radiation Research and Technology, Atomic Energy Authority.

Ass. Prof. Dr. / Wael Mohamed Hosam El-din Eisa

Ass. Prof. of Spectroscopy, National Center for Research

Prof. Dr. Ebrahim Hosani Ali Badr

Head of Chemistry Department

Referees

Approval sheet

Title of Ph. D thesis

Radiation-induced synthesis and characterization of some nanocomposites and their applications

Researcher Name:

Rehab Sokary Sayed Mostafa El-Sokary

Supervisors

signature

Ass. Prof. Dr. / Gamal Abdel Aziz Meligi

Ass. Prof. of Organic Chemistry,

Chemistry Department, Faculty of Science, Ain Shams University

Prof. Dr./ Zakaria Ismaiel Ali

Prof. and Head of Radiation Chemistry, National Center for Radiation Research and Technology, Atomic Energy Authority

Ass. Prof. Dr./ Hoda Hanafi Saleh

Ass. Prof. of Radiation Chemistry, National Center for Radiation Research and Technology, Atomic Energy Authority.

Ass. Prof. Dr/ Wael Mohamed Hosam El-din Eisa

Ass. Prof. of Spectroscopy, National Center for Research

Prof. Dr. Ebrahim Hosani Ali Badr Head of Chemistry Department

Name: Rehab Sokary Sayed Mostafa El-Sokary

Scientific degree: Ph. D Degree in science (chemistry),

Organic Chemistry

Department: Chemistry Department

Faculty: Faculty of Science

University: Ain Shams University

ACKNOWLEDGMENTS

First and foremost, with a deep sense of gratitude, I want to thank **ALLAH ALRAHMAN ALRAHEEM** for allowing me to perform this thesis smoothly even though I face some obstacles throughout my work and peace is upon Prophet Mohammed.

The success and the final outcome of this work required a lot of guidance and assistance from many people and I extremely fortunate to have got this all along the completion of my assignment work. Whatever I have done it only due to such guidance and assistance and I would not forget to thank them. I respect and thank **Prof. Dr. /Zakaria I. Ali,** for giving me an opportunity to do this work and providing me all the support and guidance which made me complete the work on time. I have extremely grateful to him for providing such nice support and guidance.

I would like to express my sincere esteem and deep gratitude to Ass. Prof. Dr /Gamal El Meligi for his capable supervision and encouragement and for his constant help and guidance throughout the course of this work.

I would especially like to thank *Ass. Prof. Dr. /Hoda H. Saleh*, as my teacher and mentor, she has taught me more than I could ever give her credit for here. She has shown me, by her example, what a good scientist (and person) should be.

I am highly grateful to my advisor Ass. Prof. Dr /Wael

Mohamed Hosam El-din Eisa for his valuable suggestions and
making all the facilities available to me for my research work.

I would like to thank all the group members in Laboratory for their co-operation. Especially, I would like to mention *Dr. /Tamer Abdel Aal and Dr. /Mohammed Bakhit* for their help.

Nobody has been more important to me in the pursuit of this project than the members of my family. I would like to thank *my parents*, whose love and guidance are with me in whatever I pursue. They are the ultimate role models. Most importantly, I wish to thank my loving and supportive husband, *Abu Bakr*, and my wonderful baby, *Amr*, who provide unending inspiration.

Candidate
Rehab El-Sokary

Abstract

Metal / polymer nanocomposites have attracted considerable interest in recent years due to their size-dependent properties and great potential for many applications such as nonlinear optics, photo electrochemical cells, heterogeneous photo catalysis, optical switching, and single electron transistors.

Gold nanoparticles were in situ synthesized via irradiation process, using (poly vinyl alcohal) PVA, (PVA: Chitosan (Cs)), and (PVA: poly acrylamide (PAM)) as host polymeric matrices.

The prepared gold nanoparticles (AuNPs) have spherical nanoparticles shape with different size ranging from 10 -35 nm, which were characterized by ultraviolet-visible (UV-VIS) spectroscopy, Fourior transform infrared spectroscopy (FTIR) X-ray spectroscopy and transmission electron microscopy. The synthesized gold nanoparticles have been successfully applied as a catalyst in the degradation of methyl orange and methylene blue.

Also, aniline monomer and polyvinyl alcohol composite film have been successfully synthesized using 50 kGy gamma radiation dose. The as-prepared (PVA/Ani) film has been utilized as adsorbent for the removal of methylene blue, (MB) from aqueous solution.

In addition, polyaniline (PANI) nanofibers and PANI/ PVA nanocomposite films were synthesized by the oxidative polymerization of aniline and ammonium peroxodisulfate (APS), as an oxidizing agent. The PANI/PVA nanocomposite films were exposed to γ -ray after the oxidative polymerization. Synthesized polyaniline (PANI) nanofibers and PANI/PVA nanocomposite films were characterized using various analytical techniques.

Aim of the work

In recent years, nanophase materials have gained more attention because of special physical and chemical features. Gold nanoparticles (Au NPs) attract a great deal of interest due to its well-known medical, catalytic activity, optical properties and chemical functionability. It can catalyze many reduction reactions.

In this study, the radialytic synthesis of Au NPs with controllable size and shape using water soluble poly (vinyl alcohol), Chitosan and poly (acryl amide) as a stabilizer was carried out by choice polymer type, polymer combination, polymer content, and irradiation dose.

The effective of Au nanoparticles as catalyst in the degradation of methylene blue and methyl orange was studied. The catalytic activity of AuNPs-PVA was investigated using the degradation reactions of these two dyes.

In this study, we have developed a novel approach to synthesize PVA/Ani composite film as an adsorbent for dye from water. The role of aniline monomer, initial dye concentration, and PVA/Ani film weight were investigated.

Polyaniline (PANI) is one of the most extensively studied conducting polymers due to its low cost, good environmental stability, high conductivity and interesting redox properties associated with nitrogen heteroatoms. So, the chemical and radiation - induced synthesised PANI NPs and PANI/PVA nanocomposites by oxidative polymerization of aniline using Ammonium per Sulphate (APS) as an oxidizing agent in an aqueous medium were aimed in this work.

List of Figures

Figure	Title	Page
Figure 1	Schematic representation of an increase in the	4
	surface area of cube with decrease in the particle	
	size	
Figure 2	surface areas to volume ratio equations for	6
	common nanomaterials	
Figure 3	calibration curve of methylene blue solution at	45
	maximum absorption (λ_{max}) = 664 nm	
Figure 4	UV/VIS spectra of irradiated (a) PVA/Au and (b)	52
	PVA/Au/Ag nanocomposite films.	
Figure 5	UV-visible spectra of 100 kGy irradiated (a)	55
	PVA/Cs/Au/Ag and (b) PVA/PAM/Au/Ag	
	nanocomposite films.	
Figure 6	TEM image of 200 kGy irradiated Au NPs (a)	59
	PVA/Au and (b) PVA/Au/Ag nanocomposite.	
Figure 7	TEM image of 100 kGy irradiated (a)	60
	PVA/Cs/Au/Ag and (b) PVA/PAM/Au/Ag	
	nanocomposite	
Figure 8	XRD patterns of irradiated (a) PVA/Au/Ag, (b)	64
	PVA/Cs/Au/Ag and (c) PVA/PAM/Au/Ag	
	nanocomposites	
Figure 9	FTIR spectra of 100 kGy irradiated gold	67
	nanocomposites	
Figure 10	UV-VIS absorption spectra measured at 2 min	72
	intervals for the degradation of methyl orange	
	catalyzed by (a) 0.03 g, (b) 0.06 g and (c) 0.1 g	
	AuNP-PVA at room temperature.	

Figure 11	UV-VIS absorption spectra measured at 2 min	73
	intervals for the degradation of methylene blue	, 6
	catalyzed by (a) 0.03 g, (b) 0.06 g and (c) 0.1 g	
	AuNP-PVA at room temperature.	
Figure 12	UV-VIS Spectra of 50 kGy irradiated PVA, and	75
	PVA/Ani films	
Figure 13	FTIR Spectra of 50 kGy irradiated PVA, PVA/Ani	76
	and PVA/Ani/MB	
Figure 14	UV-VIS Spectra of 50 kGy irradiated	78
	PVA/Ani/MB films	
Figure 15	FTIR Spectra of 50 kGy irradiated PVA/Ani/MB	78
	film	
Figure 16	UV-VIS spectra of 13.49 x10 ⁻⁶ M concentration of	83
	methylene blue adsorption on 0.42 g of PVA film	
Figure 17	UV-VIS spectra of adsorption of different	87
	concentration of methylene blue (a) 7.44x10 ⁻⁶ M,	
	(B) 13.49 x10 ⁻⁶ M and (c) 19.50 x10 ⁻⁶ M on 0.14 g	
	of PVA/Ani film	
Figure 18	UV-VIS spectra of adsorption of different	88
	concentration of methylene blue (a) 7.44x10 ⁻⁶ M,	
	(B) 13.49 x10 ⁻⁶ M and (c) 19.50 x10 ⁻⁶ M on 0.28 g	
	of PVA/ Ani film	
Figure 19	UV-VIS spectra of adsorption of different	89
	concentration of methylene blue (a) 7.44x10 ⁻⁶ M,	
	(B) 13.49 x10 ⁻⁶ M and (c) 19.50 x10 ⁻⁶ M on 0.42 g	
	of PVA/Ani film	
Figure 20	UV-VIS spectra of adsorption of different	90
	concentration of methylene blue (a) 7.44x10 ⁻⁶ M,	

	(B) 13.49 x10 ⁻⁶ M and (c) 19.50 x10 ⁻⁶ M on 0.56 g	
	of PVA/Ani film	
Figure 21	UV-VIS spectra of adsorption of different	91
	concentration of methylene blue (a) 7.44x10 ⁻⁶ M,	
	(B) 13.49 x10 ⁻⁶ M and (c) 19.50 x10 ⁻⁶ M on 0.7 g	
	of PVA/Ani film	
Figure 22	UV-VIS spectra of (8.84x10 ⁻⁶ M) methylene blue	94
	dye concentration adsorption on 0.7 gm of	
	PVA/Ani film at different pH (a) 12, (b)10 and (c)	
	1	
Figure 23	Temkin isotherm plot for the adsorption of	97
	different concentration of MB (a) 7.44x10 ⁻⁶ M, (B)	
	13.49 x10 ⁻⁶ M and (c) 19.50 x10 ⁻⁶ M on PVA/Ani	
	film	
Figure 24	HRTEM image of polyaniline nanofibers	99
Figure 25	HRSEM image of polyaniline nanofibers	100
Figure 26	UV-Visible spectrum of Polyaniline nanofibers	101
Figure 27	Plot of $(\alpha h v)^2$ versus $h v$ for the as-prepared of	103
	PANI nanofiber	
Figure 28	FTIR spectra of polyaniline nanofibers	104
Figure 29	XRD pattern of polyaniline nanofibers	105
Figure 30	UV-Visible spectrum of PANI/PVA	108
	nanocomposite films (a)In-situ synthesis, (b) Ex-	
	situ synthesis	
Figure 31	FTIR spectra of PANI/PVA nanocomposite films	110
	(a) in-situ synthesis, (b) ex-situ synthesis	
Figure 32	XRD pattern of PANI/PVA nanocomposite films	112
	(a) in-situ synthesis, (b) ex-situ synthesis	

List of Figures

Figure 33	HRSEM image of in-situ synthesis of PANI/PVA	114
	nanocomposite films ,(a) unirradiated film, (b) 50	
	kGy, (c)100 kGy	
Figure 34	HRSEM image of ex-situ synthesis of PANI/PVA	115
	nanocomposite films ,(a) unirradiated film, (b) 50	
	kGy, (c)100 kGy	
Figure 35	HRTEM image of in-situ synthesis of PANI/PVA	117
	nanocomposites films, (a) unirradiated film, (b) 50	
	kGy	
Figure 36	HRTEM image of of ex-situ synthesis of	118
	PANI/PVA nanocomposites films, (a) unirradiated	
	film, (b) 50 kGy	

List of Tables

Table	Title	Page
Table 1	The crystallite particle size calculated from XRD	63
	analysis	
Table 2	The assignment of the main FTIR peaks for	77
	PVA/Ani and PVA/Ani/MB films	
Table 3	The values of initial, final (equilibrium)	86
	concentration of dye and dye removal percentage	
	with different weight of adsorbent films	
Table 4	The values of initial, equilibrium concentration of	93
	dye and removal percentage of dye at different pH	
	of solution	
Table 5	The value of the equilibrium binding constant and	96
	efficiency of data	

List of Schemes

Scheme	Title	Page
Scheme 1	Chemical structures of polyvinyl alcohol	22
Scheme 2	Chemical structures of polyacrylmide	22
Scheme 3	Chemical structure of chitosan with a fraction m/(n + m) of acetylated moieties.	23
Scheme 4	Chemical structures of polyaniline	24
Scheme 5	Molecular Structure of MB	43
Scheme 6	Molecular Structure of MO	43
Scheme 7	The proposed mechanism for the catalytic degradation of MO and MB dyes in the presence of NaBH ₄ and Au nanoparticles.	70
Scheme 8	Probable removal mechanism of MB dye adsorption on the PVA/Ani surface, (a) Chemical structure, (b) Diagram description	82

List of Abbreviations

Abbreviation	Scientific name
Ani	Aniline
APS	Ammonium per sulfate
ATR-FTIR	Attenuated total reflectance Fourier transform
	infrared spectrometers
Au NPs	Gold nanoparticles
СВ	Conduction band
Cs	Chitosan
$\mathbf{E}_{\mathbf{g}}$	Band gap energy
eV	Electron volt
НОМО	Highest occupied molecular orbitals
HRSEM	High resolution scanning electron microscopy
HRTEM	High resolution transmission electron
	microscopy
kGy	Kilo gray
LSPR	Localized surface plasmon resonance
LUMO	Lowest unoccupied molecular orbitals
MB	Methylene blue
МО	Methyl orange
nm	Nanometer