Surgical Procedures in Mangment of Metabolic Syndrome

Essay

Submitted for partial fulfillment of master degree in general surgery

Presented by Mohammed Bakr Abdelfatah

Supervised by

Prof. Dr. Samy Ahmed Abdelrahman

Professor of General Surgery

Faculty of Medicine

Ain Shams University

Dr. karim Fahmy Abdelmuti

Lecturer of General Surgery

Faculty of Medicine

Ain Shams University

Faculty of Medicine
Ain Shams University
2017

سورة التوبة الآية (١٠٥)

Contents

Subjects Pa		Page
_	Tiet of Abbusyistions	T
•	List of Abbreviations	1
•	List of Tables	II
•	List of Figures	III
•	Introduction	1
•	Aim of the work	2
•	Pathophysiology and diagnosis of syndrome	
•	Classification of surgical procedures in mana	_
•	Techniques of the most common procedures	57
•	Outcomes and complications of these procedu	ures 132
•	Future prospects	169
•	Summary	182
•	References	185
•	Arabic summary	

List of Abbreviations

BAE : Bariatric Arterial Embolization

BPD-DS: Biliopancreatic Diversion with Duodenal

Switch

CVD : Cardiovascular Diseases

CRP : C-Reactive Protein

EBWL : Excess Body Weight Loss

EEA : End to End Anastomosis

EGIR: European Group for the Study of Insulin

Resistance

IDF: International Diabetes Federation

IGT: Impaired Glucose Tolerance

LAGB: Laparoscopic Adjustable Gastric Banding

LRYBG: Laparoscopic Roux-en-Y Gastric Bypass

LSG : Laparoscopic Sleeve Gastrectomy

MGB : Mini Gastric Bypass

NCEP : National Cholesterol Education Program

PPARg: Peroximase Proliferation Activated Receptor

Gamma gene

🕏 List of Abbreviations 🗷

SADI-S: Single Anastomosis Duodeno Ileal Bypass with

Sleeve

SASI : Single Anastomosis Sleeve Ileal

SMOB : Swiss Study Group for Morbid Obesity

WHO: World Health Organization

List of Tables

Figure No	Title	Page
Table (1)	Management of metabolic syndrome	33
Table (2)	Vitamin supplement recommendations	161

List of Figures

Figure No	Title	Page
Fig. (1)	Positive feedback loop resulting in self-	11
	perpetuation of primary defect.	
Fig. (2)	Magnetic resonance imaging showing different adipose compartments. The outer elliptic ring signifies both subcutaneous and intra-abdominal	16
Fig. (3)	Variation in human body fat distribution in men and women	16
Fig. (4)	Roux-en-Y gastric bypass.	62
Fig. (5)	Horizontal transection using a linear stapling device.	65
Fig. (6)	Creation of gastric pouch.	65
Fig. (7)	Transection using a linear stapling device.	68
Fig. (8)	Creation of enterotomies.	68
Fig. (9)	Creation of the jejunojejunostomy.	69
Fig. (10)	Closure of the defect.	69
Fig. (11)	Circular stapler.	73
Fig. (12)	Gastrojejunal Anastomosis (Linear Stapler Technique).	75

🕏 List of Figures 🗷

Figure No	Title	Page
Fig. (13)	Gastrojejunostomy.	75
Fig. (14)	Running full-thickness absorbable suture.	76
Fig. (15)	Anterior interrupted permanent seromuscular sutures.	76
Fig. (16)	Mini gastric bypass.	85
Fig. (17)	Creation of the sleeve 3 cm proximal to the pylorus.	95
Fig. (18)	LSG.	96
Fig. (19)	Nonadjustable Marlex band at the proximal part of the stomach	100
Fig. (20)	First version of the Lap-Band. Note the narrow foot print, not circumferential, and the smaller volume balloon.	103
Fig. (21)	Lap-Band AP. Wider footprint, larger circumferential balloon with lower volume.	104
Fig. (22)	Realize band equivalent to the Swedish band.	104

Figure No	Title	Page
Fig. (23)	BPD-DS. SG is performed and the first	112
	duodenum is anastomosed to the last 250	
	cm of small bowel. A 100-cm common	
	channel is created.	
Fig. (24)	Trocars position for a laparoscopic BPD-	116
	DS.	
Fig. (25)	Transection of the gastrocolic ligament.	117
Fig. (26)	(A) The duodenum is lifted up with a	119
	Penrose drain and the retroduodenal	
	window is enlarged (B) pancreatic head	
	and (C) pylorus.	
Fig. (27)	Transection of the (A) duodenum using a	120
	60-mm stapler with a blue load, 3 cm	
	from (B) the pylorus.	
Fig. (28)	The SG is started 5 cm to 7 cm from the	121
	pylorus.	
Fig. (29)	The first posterior layer is created using	124
	3-0 absorbable suture, to approximate.	
Fig. (30)	The anterior wall of the anastomosis is	124
	created, using an absorbable 3-0 running	
	suture, starting from the top of the	

Figure No	Title	Page
	anastomosis.	
Fig. (31)	A2-0Vicrylsutureisplacedtoapproximate	126
	(A) the common channel and (B) the	
	biliary limb (C) The alimentary limb is	
	located in the patient's right flank and (D)	
	proximal Ileon.	
Fig. (32)	The intestinal opening of the anastomosis	126
	is closed with a 3-0 absorbable suture (A)	
	The common channel is on the left and	
	(B) the biliary limb is on the right.	
Fig. (33)	RYGB pouch creation after an open VBG	129
	(Mason). The red arrow indicates the	
	horizontal transection above the	
	Marlex/Dacron mesh. The striped triangle	
	represents the subtotal gastrectomy with	
	resection of the staple line.	
Fig. (34)	RYGB pouch creation after a	130
	laparoscopic VBG (MacLean). The red	
	arrows indicate the horizontal transection	
	above the silastic ring and the trimming	
	of the gastric pouch.	

Figure No	Title	Page
Fig. (35)	Roux-en-Y gastric bypass.	133
Fig. (36)	Laparoscopic sleeve gastrectomy.	137
Fig. (37)	Laparoscopic adjustable gastric banding.	138
Fig. (38)	Transection of the first part of the duodenum.	172
Fig. (39)	Transected duodenum is anastomosed to an ileal loop.	172
Fig. (40)	SASI bypass.	174
Fig. (41)	Over the past 50 years, the U.S. population has been getting heavier, with a concomitant increase in obesity-related diseases.	176
Fig. (42)	An overview of bariatric interventions. RYGB, adjustable gastric banding, and SG are the most commonly employed.	177
Fig. (43)	Basic gastric anatomy.	179
Fig. (44)	DSA of the LGA.	179

Abstract

Bariatric surgery is currently the only method that provides weight loss for morbidly obese patients, with a resulting improvement in the accompanying diseases associated with obesity.

In addition metabolic surgery has become safer and less dangerous.

Kye words

Metabolic syndrome, Baritric surgery, Anastomosis, Laparoscopic

Introduction

The metabolic syndrome is a combination of disorders that include: obesity, insulin resistance, impaired regulation of body fat and high blood pressure. The two most significant risk factors for development of the metabolic syndrome are visceral obesity and insulin resistence (*Haffner*, 2006).

Due to sedentary lifestyles and excessive calorie intake, metabolic syndrome is becoming increasingly common health problem in the world (*Grundy*, 2008). Complications related to the metabolic syndrome significantly reduce quality of life of the patients, and represents a huge socio-economic burden.

Bariatric surgery is currently the only modality that provides a significant, sustained weight loss for morbidly obese patients, with resultant improvement in obesity-related comorbidities (*Sjöström*, 2012).

Classification of surgical procedures:

- 1. Malabsorptive procedures
- 2. Restrictive procedures
- 3. Mixed procedures (Abell and Minocha, 2006)

Aim of the work

Is to review an important surgical procedures for treatment of metabolic syndrome, and to assess outcomes, weight loss and complications.

Pathophysiology and diagnosis of metabolic syndrome

It is common to be a development of visceral fat, after which the adipocytes (fat cells) of the visceral fat increase plasma levels of TNF- α and alter levels of a number of other substances (e.g., adiponectin, resistin, and PAI-1). TNF- α has been shown not only to cause the production of inflammatory cytokines, but also possibly to trigger cell signaling by interaction with a TNF- α receptor that may lead to insulin resistance (*Hotamisligil*, 1999).

The progression from visceral fat to increased TNF- α to insulin resistance has some parallels to human development of metabolic syndrome. The increase in adipose tissue also increases the number of immune cells present within, which play a role in inflammation. Chronic inflammation contributes to an increased risk of hypertension, atherosclerosis and diabetes (*Whitney et al.*, 2011).