FRACTURE NECK FEMUR IN CHILDREN

ESSAY

Submitted for fulfillment of the M.Sc.

Degree in orthopedics

Presented by

ASER ADEL MANSOUR

M.B.B.CH., MANSOURA UNIVERSITY

Supervisors

PROF.DR.AHMED MORRAH

Professor of orthopedic surgery,

Cairo University

DR. AHMED EIGHONIEMY

Lecturer of orthopedic surgery,

Cairo University

2009

بسم الله الرحمن الرحيم

Table of Content

Contents	Page
Acknowledgements	i
Table of figures	ii
Abbreviations	V
Introduction	1
Anatomy	4
Biomechanics	28
Mechanism of injery and classification	42
Diagnosis	56
Tretment	71
Complication	91
English summary	110
References	112
Arabic summary	Í

Acknowledgements

Thanks and foremost thanks to Allah.

to PROF. DR. AHMED MORRAH Professor of orthopedic surgery, Cairo University. For his fatherly encouragement, helpful supervision and continuous guidance during execution of this work.

I am also expressing my sincere appreciation and deepest gratitude to **DR. AHMED EIGHONIEMY** Lecturer of orthopedic surgery Cairo University. For his valuable support and advices.

Finally, I wish also to express my deepest gratitude and thanks to my family for their support and help.

i

List of Figures

No	Figure	Page
1	Capsule of hip joint	7
2	Iliofemoral and pubofemoral ligament	8
3	Ischiofemoral ligament	8
4	Stages in ossification of the femur	11
5	The percentage of growth of the femur	14
6	Arteries of head femur	18
7	Arterial anastomosis around the margin of the femoral neck	19
8	Coronal section of blood supply of head femur	20
9	Circulatory pattern in the infantile age	22
10	Circulatory pattern in the pre-adolescent phase	23
11	Circulatory pattern in the adolescent phase	24
12	Circulatory Pattern In Adult Period	25
13	Anterior surface anatomy of the hip	27
14	Neck shaft angle	32
15	Development of the neck-shaft angle	32
16	Anatomical anteversion angle	33
17	Schematic view of the forces in the hip	34
18	The structures surrounding the hip joint	41

19	Illustrations showing the mechanism of injury	45
20	Delbet classification of the fracture neck femur in children	48
21	Delbet four-part classification	49
22	Type 1 Salter Harris classification	52
23	Type 2 Salter Harris classification	53
24	Type 3 Salter Harris classification	53
25	Type 4 Salter Harris classification	54
26	Type I : transepiphyseal fracture	59
27	Type II: transcervical fracture	61
28	Type III: cervico trochanteric fracture	61
29	Type IV: intertrochanteric fracture	62
30	Stress fracture of child neck femur	63
31	MRI of stress fracture of child neck femur	63
32	CT of displaced type iii fracture	66
33	MRI type i fracture of the left femoral neck	68
34	Type I transepiphyseal fracture treated by ORIF	75
35	Type II treated by ORIF by 3 screws	78
36	Classic treatment of type II fracture	78
37	Type III treated with 2 cannulated screws	80
38	Type III fracture treated with 3 cannulated screws	81

39	Unstable fracture treated by 2 screws and primary valgus ostestomy	82
40	Type IV fracture treated with dynamic hip screw and plate	84
41	Watson-Jones lateral approach to hip joint	90
42	Three types of osteonecrosis	95
43	MRI scan showing ratliff type II avascular necrosis	98
44	Subtrochanteric osteotomy for coxa vara deformity	103
45	Lateral subtrochanteric wedge osteotomy for nonunion	106

List of Abbreviations

AC angle	Acetabular roof angle
AIIS	Anterior Inferior Iliac Spine
ASIS	Anterior Superior Iliac Spine
AVN	Avascular Necrosis
BMP	Bone Morphogenetic Proteins
CCD	Center-Column-Diaphysis
CE	Center Edge
cm	Centimeter
СТ	Computariezed Tomography
ed	Edition
FGF	Fibroblast Growth Factor
Fig	Figure
GT	Greater Trochanter
IGF-I and II	Insulin like Growth Factor I and II
Kgms	Kilograms
LCA	Lateral Circumflex Artery
LLD	Leg Length Discrepancies
MCA	Medial Circumflex Artery
MRI	Magnetic Resonance Imaging
mm	Millimeter
PDGF	Platelet Derived Growth Factor
PSIS	Posterior Superior Iliac Spine
ORIF	Open Reduction Internal Fixation
SCO	Secandary Center of Ossification
SD	Standard Deviation
TGF-β	Transforming Growth Factor β
3D	Three Dimensional
%	Percentage
0	Degree

Introduction

Femoral neck fracture in children is relatively infrequent injuries as compared with femoral neck fracture in elderly people with osteoporotic bone (**Upadhyay et al, 2004**).

In children the dense bone of femoral neck is surrounded by a strong periosteum and high energy force must be applied before breaking it. This explains the rarity of femoral neck fracture in children less than 1% of all fracture (**Holton et al, 2006**).

Classification system of femoral neck fracture in children described by Delbet (1928) and popularized by Colonna(1929) is:

Type I: Transepiphyseal fracture

Type II: Transcervical fracture

Type III: Cervicotrochenteric fracture

Type IV: Intertrochentric fracture