ENVIRONMENTAL IMPACTS OF IRON SLAG AND ITS UTILIZATION FOR IMPROVEMENT OF ROAD BASES

Submitted By Mohamed Ahmed Mohamed Gharieb Mwafy

B.Sc. of Science (Chemistry/Biochemistry), Faculty of Science, Alexandria University, 2003

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences
Institute of Environmental Studies and Research
Ain Shams University

APPROVAL SHEET

ENVIRONMENTAL IMPACTS OF IRON SLAG AND ITS UTILIZATION FOR IMPROVEMENT OF ROAD BASES

Submitted By

Mohamed Ahmed Mohamed Gharieb Mwafy

B.Sc. of Science (Chemistry/Biochemistry), Faculty of Science, Alexandria University, 2003

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Basic Sciences

This thesis Towards a Master Degree in Environmental Sciences Has been approved by:

Name Signature

1-Prof. Dr. Samir Ahmed Awad

Prof. of Geology, Department of Geology Faculty of Science Ain Shams University

2-Prof. Dr. Ali I. M. Ismail

Prof. of Engineering Geology, Department of Geology National Research Center

3-Prof. Dr. Hassan Hassanein Darwish

Prof. of Technological & Building Materials Engineering National Research Center

4-Prof. Dr. Laila Abd El Megid Fayed

Prof. of Engineering Geology Faculty of Science Cairo University

ENVIRONMENTAL IMPACTS OF IRON SLAG AND ITS UTILIZATION FOR IMPROVEMENT OF ROAD BASES

Submitted By Mohamed Ahmed Mohamed Gharieb Mwafy

B.Sc. of Science (Chemistry/Biochemistry), Faculty of Science, Alexandria University, 2003

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1-Prof. Dr. Samir Ahmed Awad

Prof. of Geology, Department of Geology Faculty of Science Ain Shams University

2-Dr. Ali I. M. Ismail

Associate Prof. of Engineering Geology, Department of Geology National Research Center

ACKNOWLEDGMENTS

First words and foremost thanks to Allah, the most beneficent and merciful.

I would like to sincerely thank my supervisor **Dr. Professor. Ali Ismael** for his guidance throughout the supervision of this work, his valuable comments during the writing up and his critical comments during the analytical tests. I would like also to thank **Dr. Professor. Samir Awd**, for supervising the work, his continuous encouragement and faithful discussion during the progress of the work covered by the present thesis.

Grateful thanks to my dear general manger **Mr. Abdallah Nassar** (General Director of Mineralogy and Geochemistry, EMRA), for his effective help and encouragement, also a special thanks to my dear manger **Mr. Medhat Ali Abd Al Raziq** (Director of Mineralogy, EMRA), for his help and faithful discussion in the chemical part of the environmental applications.

My special thanks and acknowledgement are due to my Father, Mother and my brothers Mr. Eslam and Dr. Basem for their moral support and encouragement, who made this research possible. My thanks also are due to my sincere wife and my daughter **Jana** and my son **Yahya** for their patience and encouragement during the research period.

Thank you very much!

CURRICULUM VITAE

Name : Mohamed Ahmed Mohamed Gharieb Mwafy

Date of birth : 10/1/1983

Nationality: Egyptian.

Mobile : 00201002064987

Qualification: B.Sc. of Science (Alex. University) 2003, with general

grade (Very Good).

Specification: Chemistry and Bio chemistry.

Current Job: Chemist in Egyptian Mineral Resources Authority.

Experience: Chemist in the Department of Mineralogical and

Geochemical Studies in the "Central Laboratories Sector of Egyptian Mineral Resources Authority".

 $E\text{-mail address: } \underline{dr.mwafy@yahoo.com} \text{ , } \underline{mmwafy2017@gmail.com}$

TO MY FATHER

ABSTRACT

MSC. Thesis:

Name of Student: Mohamed Ahmed Mohamed Gharieb Mwafy

Thesis title: Environmental impacts of iron slag and its utilization for improvement of road bases

In this study Electric arc furnace (EAF) slag is utilized in two applications, namely the improvement of engineering properties of soil materials (problematic soil stabilization) and in blended cement. In Egypt, there is found that a very small percentage of EAF slag was utilized in engineering purposes, although, on the other hand a huge quantity of EAF slag was accumulated. In order to validate this application, a series of tests have been carried out to determine the environmental impact such as chemical and mineral composition, boiling test, pH, and leaching test for the different cooling rates EAF slag.

From the chemical analysis results, it is shown that all heavy metals in EAF slag except V and Cr are found to be very low and insignificant in term of environmental impacts. The cooling rate affects significantly the leaching of Cr, without a significant relation of the original slag Cr content.

Various mixes (up to 20% EAF slag by dry weight of the test soil) with or without lime are used in this study. The investigations showed that free swelling improved by increasing the addition of EAF slag till 10% EAF slag and then remain constant, and the percent of improving varied according to the cooling rate of EAF slag, where the water cooled slag decrease the free swelling more than the air cooled slag. The addition of lime resulted in a dramatic improvement in the free swelling.

By comparing the effect of the two different cooling rates of EAF slag (up to 10% by dry weight) on the properties of the concrete pastes after 28 days of curing are carried out in this study. XRD, SEM, density, pH and compressive strength results show that the water (rapid) cooled EAF slag causes a marked improvement in the mechanical properties for the hardened pastes.

Keywords: Electric arc furnace slag, Soil stabilization, Concrete pastes, Environmental impacts.

TABLE OF CONTENTS

CHA	PTER O	NE	
INTE	RODUCT	ION	1
1.1.	BACKO	GROUND	1
1.2.	STATE	MENT OF THE PROPLEM	3
	1.2.1.	Iron and steel production wastes	4
	1.2.2.	Egyptian expansive soils	4
	1.2.3.	Concrete pastes problems	6
1.3.	OBJEC'	TIVES OF THE STUDY	7
	1.3.1.	Materials characterization	7
	1.3.2.	Engineering, physical, mineralogical and	
		chemical characterizations of concrete pasts and	
		stabilized road bases	8
	PTER TV		
LITE 2.1.		E REVIEWDUCTION	1(1(
2.2.	SLAG E	DEFINITION	1(
2.3.	CHEMI	CAL AND MINERAL COMPOSITION OF IRON	
	AND ST 2.3.1.	EEL SLAG	13 13
	2.3.1.1	Chemical Composition of BF Slag	13
	2.3.1.2	The mineralogical Composition of BF slag	13
	2.3.2.	Steel Slag	17
	2.3.2.1	Basic oxygen slag	17
	2.3.2.2	Electric arc furnace slag	18

Ladle slag

19

2.3.2.3

ΓAΒΙ	LE OF CO 2.3.2.4	ONTENTS (cont.) Chemical Composition of Steel Slag	19
	2.3.2.5	Mineralogical Properties of Steel Slag	24
2.4.	UTILIZI DIFFERI 2.4.1.	NG OF IRON AND STEEL SLAG IN ENT APPLICATION	27 27
	2.4.2	Steel slag utilization	29
	2.4.2.1.	Usage of Steel Slag in the Cement industry and	
		Concrete pastes	31
	2.4.2.2.	Usage of Steel Slag in Road Applications	32
2.5.	EGYPTI	AN PROBLEMATIC SOILS	33
	2.5.1	Background	33
	2.5.2	Expansive soils	34
	2.5.3	Stabilization of expansive soils	35
2.6.		NMENTAL ISSUES ASSOCIATED WITH ND STEEL SLAG	36 37 38
_		HREE AND METHOD	39 39
3.2.	MATER	IALS	39
	3.2.1.	Electric arc furnace slag	39
	3.2.2.	Egyptian expansive soil	48
	3.2.3.	Ordinary Portland cement (OPC)	49
	3.2.4.	Lime	52

CABI		ONTENTS (cont.)
	3.2.5.	Fine aggregate
	3.2.6.	Coarse Aggregate
3.3.		LAG MIXTURES AND SLAG BLENDED IT CONCRETE PASTES PREPARATION
	3.3.1.	Different types of Soil/Slag mixtures
	3.3.1.1.	Soil/ EAF slag mixtures
	3.3.1.2.	Soil/ Lime activated EAF slag mixtures
	3.3.2.	Slag blended cement concrete preparation
	3.3.2.1.	Hardened blended cement design (A)
	3.3.2.2	Hardened blended cement design (B)
3.4.	METHO	DDS
	3.4.1.	X-Ray fluorescence
	3.4.2.	X-ray Diffraction Analysis
	3.4.3.	Scanning Electron Microscope
	3.4.4.	Alkalinity test
	3.4.5.	Leaching Test.
	3.4.6.	Volume stability
	3.4.7.	Petrography
	3.4.8.	Free swelling test
СНА	APTER F	OUR
		ENTAL IMPACTS OF ELECTRIC ARC
		LAG
4 1	INTRO	DUCTION

TAB 4.2.		ONTENTS (cont.) CAL COMPOSITION	76
4.3.	MINER	AL COMPOSITION	77
4.4.	VOLUM	TE STABILITY	78
	4.4.1.	Short-term expansion	78
	4.4.2.	Long-term expansion	79
	4.4.3.	The Egyptian EAF slag volume stability	80
4.5.		ONMENTAL IMPACTS ASSOCIATED WITH GYPTIAN EAF SLAG UTILIZATION	81 82
	4.5.2.	Heavy metal concentration.	83
	APTER F	IVE STIGATION AND IMPROVEMENT OF	
PRO	OBLEMA	ATIC SOIL	8
5.1.	INTROI	DUCTION	88
5.2.		GICAL OF THE EGYPTIAN BENTONITES ENCES.	88
	5.2.1.	South and Southwest Alamein	88
	5.2.2.	Cairo - Alexandria Desert road	89
	5.2.3.	El-Fayoum area	89
	5.2.4.	West and Southwest Qattara Depression	90
	5.2.5.	El-Quttamya area	90
	526	North Fastern Cairo (G. Hamza area)	9

FAB 1	LE OF CO	NTENTS (cont.)	
5.3.	THE STU	UDIED AREA	91
	5.3.1.	Overburden characterization	93
	5.3.2.	Bed rock characterization.	98
	5.3.3.	Bentonite deposits	103
5.4.	Utilization	n of Egyptian EAF slag in road bases	111
	5.4.1.	Effect of EAF slag alone in the test soil	111
	5.4.1.1	Mineralogical analysis of soil/ slag mixture	112
	5.4.1.2.	Effect of the EAF slag on the swelling	121
		characteristics of the test soil	
	5.4.2.	Effect of lime activated EAF slag in the test	124
		soil	
	5.4.2.1	Mineralogical analysis of soil/ lime activated	125
		slag mixture	
	5.4.2.2.	Effect of the lime activated EAF slag on the	135
		swelling characteristics of the test soil	
	APTER SIZ LIZATION	X N OF EAF SLAG IN BLENDED CEMENT	
PRC	DUCTIO	N	139
6.1.	INTROD	UCTION	139
6.2.	BLENDE	CD CEMENT DESIGN (A)	140
	6.2.1.	Chemical composition of slag concrete pastes	
		design (A)	140
	6.2.2.	Mineralogical analysis of slag concrete pastes	
		design (A)	148

TAB		ONTENTS (cont.)	
	6.2.3.	Compressive strength of slag concrete pastes	
		design (A)	158
	6.2.4.	Density of slag concrete pastes design (A)	160
	6.2.5.	Alkalinity of slag concrete pastes design (A)	161
6.3.	BLENDI	ED CEMENT DESIGN (B)	162
	6.3.1.	Chemical composition of slag concrete pastes	
		design (B)	163
	6.3.2.	Mineralogical analysis of slag concrete pastes	
		design (B)	17 1
	6.3.3.	Compressive strength of slag concrete pastes	
		design (B)	180
	6.3.4.	Density of slag concrete pastes design (B)	182
	6.3.5.	Alkalinity of slag concrete pastes design (B)	183
_	APTER SE	EVEN NS AND RECOMMENDATION	185
7.1.		ROUND	185
7.1. 7.2.			185
	THE MAIN GOALS OF THE STUDY		
7.3.	MAIN CO	ONCLUSION	186
	7.3.1.	Slag evaluation	186
	7.3.2.	Effect of adding Egyptian EAF slag with and	
		without lime on the engineering properties of a	
		lateritic soil	187

TAB	LE OF CO	ONTENTS (cont.)	
	7.3.3.	Effect of adding Egyptian EAF slag to the OPC	
		cement	188
7.4.	RECOM	MENDATIONS	189
SUM	MARY .		191
REF	FERENCE	ES	195
لعربي	الملخص اا		í

LIST OF FIGURES

Figure No.	Item	Page
Fig. 1.1.	Statement of the study problems	3
Fig. 1.2.	Flow chart of the study plan	9
Fig. 2.1.	Classification of Slag	11
Fig. 2.2.	Classification of Ferrous Slag	11
Fig. 2.3.	Steel slag utilization in Europe.	30
Fig. 3.1.	Photograph of the air cooled EAF slag from different Egyptian factories	40
Fig. 3.2.	Photograph of the water cooled EAF slag from different Egyptian factories	40
Fig. 3.3.	The re-melting process using magnesium oxide crucible and Carbolite furnace	41
Fig. 3.4.	XRD patterns of the investigated five Egyptian EAF slags at different cooling conditions	45
Fig. 3.5.	XRD patterns of the investigated Expansive soil	48
Fig. 3.6.	XRD patterns of the used OPC cement	52
Fig. 3.7.	XRD patterns of the used quick lime	55
Fig. 3.8.	XRD patterns of the used fine aggregate	57
Fig. 3.9.	XRD patterns of the used coarse aggregates	59
Fig. 310.	Photograph of the dried expansive soil and 2 different cooling rate EAF slag before mixing	60
Fig. 3.11.	Photograph of the rolled soil/slag mixture	
	BA5 (5% air cooled EAF slag)	61