Platelet-rich Plasma Gel in Wound Closure in Recurrent Cesarean Section Randomized Controlled Trial

Thesis

Submitted for partial fulfillment of Master Degree in Obstetrics and Gynaecology

Presented by

Nour El Eslam Hamdy Mahmoud

M.B.B.Ch

Ain Shams University 2010 Resident in Port Said General Hospital Department of Obstetrics and Gynaecology – Faculty of Medicine Ain Shams University

Under Supervision of

PROF. DR. HELMY MOTAWE EL-SAYED

Professor of Obstetrics and Gynaecology Faculty of Medicine, Ain Shams University

PROF. Dr. SHERIF FATHI EL-MEKKAWI

Professor of Obstetrics and Gynaecology Faculty of Medicine, Ain Shams University

DR. RASHA MAHMOUD MEDHAT ABDUL-HADI

Lecturer of Obstetrics and Gynaecology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2017

سورة البقرة الآية: ٣٢

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful. I can do nothing without Him.

I would like to express my sincere gratitude to **Prof. Dr. Helmy Motawe El-Sayed,** Professor of Obstetrics and Gynaecology, Faculty of Medicine, Ain Shams University, under his supervision, I had the honor to complete this work, I am deeply grateful to him for his professional advice, guidance and support.

My deep gratitude goes to **Dr. Sherif Fathi El-Mekkawi,** Professor of Obstetrics and Gynaecology, Faculty of Medicine, Ain Shams University, for his great support, tireless guidance and meticulous supervision throughout this work.

I would like also to thank with all appreciation **Dr. Rasha Mahmoud Medhat Abdul-Hadi,** Lecturer of Obstetrics and Gynaecology, Faculty of Medicine, Ain Shams University, for the efforts and time and she has devoted to accomplish this work.

Last but not least, I like to thank all my Family, especially my Parents and my Husband, for their kind care, help and encouragement.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Cesarean Section	4
Platelet Anatomy and Function	27
Tissue Renewal, Regeneration & Repair	35
Platelet Rich Plasma (PRP)	92
Patients and Methods	108
Results	131
Discussion	153
Conclusion	164
Summary and Conclusion	165
References	168
Arabic Summary	

List of Abbreviations

Abbr. Full-term

BMP : Morphogenetic protein

CDMR : Cesarean delivery on maternal request

CS : Caesarean Section

DNA : Deoxyribonucleic acid,

DVT : Deep Venous Thrombosis

ECM : Extracellular matrix

EGF : Epidermal growth factor

FGF : Fibroblast growth factor

GI : Gastrointestinal

IL : Interleukin

LSCS: Lower segment caesarean section

NIH : National Institutes of Health

PDAF : Platelet-derived angiogenesis factor

PDEGF : Platelet-derived endothelial growth factor

PE : Pulmonary Embolus

PRP : Platelet-rich plasma

RBCs : Red blood cells

SD : Standard deviation

SPSS : Statistical package for social science

TGF : Transforming growth factors

List of Tables

Eable No	. Title Page No.
Table (1):	Cytokines affecting wound healing32
Table (2):	Growth Factors and Cytokines Involved in Regeneration and Wound Healing
Table (3):	Main Types of Collagens, Tissue Distribution, and Genetic Disorders 52
Table (4):	Growth Factors and Cytokines Affecting Various Steps in Wound Healing73
Table (5):	Growth factors present in platelet-rich plasma and their function
Table (6):	Overview of studies on wound healing 100
Table (7):	Overview of studies on fat graft (181) 102
Table (8):	Overview of studies on bone grafts103
Table (9):	Table of randomization 109
Table (10):	Growth factors of platelets121
Table (11):	Comparison between the two groups as regards age
Table (12):	Comparison between the two groups as regards Gravity
Table (13):	Comparison between the two groups as regards parity
Table (14):	Comparison between the two groups as regards BMI
Table (15):	Comparison between two groups as regards first day post-operative Pain
Table (16):	Comparison between two groups as regards first week postoperative Pain

Table (17):	Comparison between two groups as regards first month postoperative Pain 139
Table (18):	100 mm Visual Analog Scale (VAS) for wound healing evaluation
Table (19):	Comparison between two groups as regards first day post-operative wound healing
Table (20):	Comparison between two groups as regards first week postoperative wound healing
Table (21):	Comparison between two groups as regards first month postoperative wound healing p-value was <0.001*
Table (22):	Modified Vancouver scar scale 144
Table (23):	Comparison between two groups as regards first day post-operative cosmetic effect145
Table (24):	Comparison between two groups as regards first week postoperative cosmetic effect
Table (25):	Comparison between two groups as regards first month postoperative cosmetic effect 147
Table (26):	Comparison between two groups as regards Wound infection
Table (27):	Comparison between the two groups as regards woman satisfaction
Table (28):	Results of the (satisfaction with the result, desire for improvement, and expectations beingmet) for the control group and the PRP (Arthrex ACP) group

List of Figures

Figure No.	Citle Page No.
Figure (1):	Several caesarean sections
Figure (2):	Illustration of the steps of cesarean section
Figure (3):	Subcuticular Stiches
Figure (4):	Staples25
Figure (5):	Staples removal
Figure (6):	The Honeycomb Dressing put over staples
Figure (7):	Stitches, Steri-Strips& Staples26
Figure (8):	Schematic overview of a resting and activated platelet
Figure (9):	The different cascade stages in hemostasis after tissue injury30
Figure (10):	Schematic illustration of the role of PDGFs
Figure (11):	Action of platelets in wound healing34
Figure (12):	Overview of healing responses after injury37
Figure (13):	Role of the extracellular matrix in regeneration and repair38
Figure (14):	Cell cycle landmarks
Figure (15):	Main components of the extracellular matrix51

Figure (16):	Angiogenesis by mobilization of endothelial precursor cells	. 53
Figure (17):	Mechanisms by which ECM components and growth factors interact and activate signaling pathways	. 57
Figure (18):	Proteoglycans, glycosaminoglycans (GAGs), and hyaluronan.	. 60
Figure (19):	Interactions between Notch and VEGF during angiogenesis	. 67
Figure (20):	Phases of cutaneous wound healing: inflammation, proliferation, and maturation.	. 70
Figure (21):	Wound healing and scar formation	. 72
Figure (22):	Healing of skin ulcers	. 73
Figure (23):	Granulation tissue showing numerous blood vessels, edema, and a loose ECM containing occasional inflammatory cells	. 75
Figure (24):	Multiple roles of macrophages in wound healing	. 76
Figure (25):	Keloid.	. 86
Figure (26):	Wound contracture. Severe contracture of a wound after deep burn injury	. 86
Figure (27):	Development of fibrosis in chronic inflammation.	. 88
Figure (28):	Repair, regeneration, and fibrosis after injury and inflammation.	. 91
Figure (29):	Platelet concentrating cell separators	. 97
Figure (30):	Platelet concentrating cell separators	. 97

Figure (31):	a. First centrifugation b. Second centrifugation				
Figure (32):	Illustration of the split thickness skin graft donor site				
Figure (33):	a Neurotrophic corneal ulcer with high risk of perforation				
Figure (34):	Blood was drawn intravenously from the antecubital fossa				
Figure (35):	Centrifuge machine113				
Figure (36):	After the first spin				
Figure (37):	After the second spin				
Figure (38):	The different fraction of blood column 114				
Figure (39):	PRP gel after add calcium chlorid to PRP 116				
Figure (40):	Diagram showing the mechanism by which PGF binds to the tyrosine kinase receptor 120				
Figure (41):	Comparison between two groups as regards age				
Figure (42):	Comparison between two groups as regards Gravity				
Figure (43):	Comparison between two groups as regards Parity				
Figure (44):	Comparison between two groups as regards BMI				
Figure (45):	VAS score. Pain is assessed using the VAS ranging from "0" (no pain) to "10" (worst imaginable pain). VAS: visual analogue scale				

Figure (46):	Comparison regards pain		•	139
Figure (47):	Comparison regards woun		_	143
Figure (48):	Comparison regards cosmo			147
Figure (49):	Comparison regards Wour		-	149
Figure (50):	Percentage of group			149
Figure (51):	Comparison regards Wom			151
Figure (52):	Percentage of control group			151

Abstract

Background: Platelet rich plasma (PRP) is a blood derivative that contains a high value of platelet concentration which acts as a delivery system of many growth factors. Through these release reactions of many growth factors, PRP is believed to have a crucial role in the healing system. Aim of the Work: Comparing the use of PRP and the non use of PRP immediately in elective recurrent cesarean section at the time of skin wound closure in women with previous cesarean section as regard: post operative pain, wound healing, wound infection, cosmetic results, patient satisfaction and to assess the cost effectiveness of this intervention for the possibility of standardizing it. Patients and Methods: Full history: was taken including. Personal, menstrual, obstetric, present, past and family history. Physical examination: was done including general, abdominal and local examination. Investigation: was done; including, complete blood count (HB), sugar in urine and albumin in urine, ALT, AST, creatinine, BUN, PT, PTT, INR. Conclusion and Recommendations: More studies for evaluation of the PRP use an aid in management of acute wounds with larger number of patients are needed to validate our initial results with more statistical strength levels.

Key words: Platelet rich plasma, blood derivative, platelet concentration

Introduction

Platelet-rich plasma (PRP) is defined as a portion of the plasma fraction of autologous blood having a platelet concentration above baseline ^(1,2). PRP have been used to treat wounds since 1985⁽³⁾

PRP serves as a growth factor agonist ⁽⁴⁾ and has both mitogenic and chemotactic properties ^(2,5-7). It contains a high level of platelets and a full complement of clotting and growth factors ⁽¹⁾.

The mechanism of action of PRP in wound healing ⁽⁸⁾, that platelet initiate releasing locally acting growth factors ^(7,9,10) such as: Platelet factor 4(PF4) ⁽¹⁰⁻¹²⁾, interleukin-1(IL-1), platelet-derived angiogenesis factor (PDAF) ^(6,10-12), vascular endothelial growth factor (VEGF) ^(2,13,14), epidermal growth factor (EGF) (6, 11-13, 15, 16) platelet-derived endothelial growth factor (PDEGF) ⁽⁶⁾

These growth factors aid healing by attracting undifferentiated cells in the newly formed matrix and triggering cell division ⁽¹⁷⁾.

PRP may suppress cytokine release and limit inflammation, interacting with macrophages to improve tissue healing and regeneration ⁽¹⁸⁾, PRP also play a role in host

defense mechanism at the wound site by producing signaling proteins that attract macrophages (19).

Previous studies of PRP have demonstrated antimicrobial activity (20, 21).

PRP is easy to produce with minimal effort ^(17,22) and can be prepared as needed at the point of care ⁽¹⁸⁾. In a two-step process, whole blood from the patient is first centrifuged to separate the plasma from packed red blood cells and then further centrifuged to separate PRP from platelet-poor plasma ⁽²³⁾. This concentrate is then activated with the addition of thrombin or calcium ^(18,24), resulting in a gelatinous platelet gel ⁽²⁴⁾. Clinically valuable PRP contains at least one million platelets per microliter ^(2,18).

PRP used in the treatment of chronic skin and soft tissue ulcerations ⁽²⁵⁻²⁷⁾ periodontal and oral surgery ^(11,13, 19,22,25), maxillofacial surgery ^(11, 19,25,26), orthopedic and trauma surgery ^(13,18,28,29), cosmetic and plastic surgery ^(17,29), spinal surgery ^(25,26), heart bypass surgery ⁽²⁵⁾, burns ⁽¹²⁾, and pain management.

There is limited application of the use of PRP in gynecology and obstetrics, therefore in our study we try to evaluate the cost effectiveness and the benefits of PRP injection at the site of the skin wound in cesarean section and if it can be used routinely as a standard in the future.

Aim of the work

Comparing the use of PRP and the non use of PRP immediately in elective recurrent cesarean section at the time of skin wound closure in women with previous cesarean section as regard: post operative pain, wound healing, wound infection, cosmetic results, patient satisfaction and to assess the cost effectiveness of this intervention for the possibility of standardizing it.