

PERFORMACE ANALYSIS AND ECONOMICAL ASSESSMENT OFA DISTRICT COOLING SYSTEM

 \mathbf{BY}

ENG. Hussein Bunyan Ismail

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In Mechanical Power Engineering

Faculty of Engineering, Cairo University

Giza, Egypt

2015

PERFORMACE ANALYSIS AND ECONOMICAL ASSESSMENT OFA DISTRICT COOLING SYSTEM

 \mathbf{BY}

ENG. Hussein Bunyan Ismail

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In Mechanical Power Engineering

UNDER SUPERVISION OF PROF.DR. MAHMOUD FOUAD

Professor of Mechanical Power Engineering, Faculty of Engineering, Cairo University Dr. Ashraf Ibrahim Sayed

Mechanical Power Engineering,

Faculty of Engineering, Cairo University

Faculty of Engineering, Cairo University

Giza, Egypt

2015

PERFORMACE ANALYSIS AND ECONOMICAL ASSESSMENT OFA DISTRICT COOLING SYSTEM

BY

ENG. Hussein Bunyan Ismail

A Thesis Submitted to the

Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In Mechanical Power Engineering

Approved by the Examining Committee,

Prof. Dr. Mahmoud Ahmed Fouad, Thesis Supervisor

Professor of Mechanical Power Engineering, Faculty of Engineering, Cairo University,

Prof. Dr. Essam El Din Khalil Hassan Khalil, Member

Professor of Mechanical Power Engineering, Faculty of Engineering, Cairo University,

Prof. Dr. Mahmoud Abd Elfattah El Kaddy, Member

Professor of Mechanical Power Engineering, Faculty of Engineering, Al Azhar University,

Faculty of Engineering, Cairo University

Giza, Egypt

2015

Engineer: Hussein Bunyan Ismail

Date of Birth: 01 / 07 / 1987

Nationality: Iraqi

E-mail: Hussean50@yahoo.com

Phone: 00201207915754

Address: Balad, Salahuddin,Iraq

Registration Date: 01 / 03 / 2013

Awarding Date: //

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Mahmoud Ahmed Fouad

Dr. Ashraf Ibrahim Sayed

Examiners: Prof. Dr. Mahmoud Ahmed Fouad Prof. Dr. Essam Eldin Khalil Hassan Khalil

Prof. Dr. Mahmoud Abd Elfattah El Kaddy (Professor of Mechanical Engineering, Al Azhar University)

Title of Thesis: PERFORMACE ANALYSIS AND ECONOMICAL ASSESSMENT OFA DISTRICT COOLING SYSTEM

Key Words: DC, Central Plant, Water Network, cooling equipment, Summary:

The objective of the present thesis is to make hydraulic analysis and economical assessment to district cooling system, the hydraulic analysis was designed by using engineering program (Bentley watergems V8i) which depended on representation of a given lengths and diameters and required flow for each building to establish the required cooling had been found that there is some problems concerning water flow rate speed inside pipes moreover, rising of pressure beyond upper limit of the allowed values of pressure. According to that modifications in network design were done to avoid this obstacle. While from the economical aspect an economical study performed and comparison were done among district cooling systems and central cooling units from side and chillers work by natural gas and others work by electricity power from the other side (the natural gas was used in Egypt because of its relative cheapness) From this economical study we discovered that district cooling system operating on natural gas better economically from the one that operating on electricity power whereas the central cooling system came in the bottom of list if it compared with district cooling system. This study found that application of this technology will increase when there is high thermal loads for area unit and that occur in high buildings.

ACKNOLODGEMEN

I have to hand this work to Allah, after that to my supervisor, Prof. Dr. Mahmoud fouad, who supported and helped me to select the right research and provided me with the required data to finish my thesis.

Also many thanks to my advisor, Dr. Ashraf Ibrahim Sayed for his support and guide.

On the other hand I cannot deny the support that was given by, Dr. Othman H.Othman

Tables of Contents

ACKNOLODGEMENTS	I
TABLE OF CONTENTS	Ι
List OF TABLESV	7
LIST OF FIGURESV	I
LIST OF SYMBOLS AND APPREVIATIONSVII	I
ABSTRACTX	K
CHAPTER 1: INTRODUCTION	1
1.1. General	1
1.2. Early Development of District System	2
1.3.1. Building possessors	3 4 4 4 5 5 5 5 6 6
1.5.2. The thermal load density is high	6
1.5.3. Rapid rate of consumer connections.	7
1.6. District Cooling and Heating System Components 1.6.1. General 1.6.2. Central plant 1.6.3. The distribution system	7 8 9
1.6.3.1. Distribution Systems Classification According to the Number of Pipes. A-Single pipe system	9

C- Three pipe system:	10
D- Four pipe system	9
1.6.3.2. Distribution Systems Classification According to the Type of Flo	ow: 10
1.6.3.3. Distribution System Construction	
1.6.3.5. Pipes positioning and thermal resistance	
1.6.4. The consumer system (end users system):	
1.7. Thesis Outline	
CHAPTER 2: LITERATURE REVIEW	20
2.1. Introduction:	20
2.2. District Heating and Cooling systems performance study	20
2.3. Distribution Networks Performance Enhancement	23
2.4. Renewable Energy-Driven District Systems	26
2.5. Thermal Energy Storage In District Cooling:	28
2.6. Scope of The Present Work	28
CHAPTER 3: HYDRAULIC ANALYSIS OF DISTRIBUTION SYSTEM	130
3.1. Objectives of The Study	30
3.2. Pipe Lines Software Programs	30
3.3. Network Hydraulic Analysis	31
3.4. The Mathematical Model	31
3.4.1. Continuity equation	31
3.4.2. Darcy-Weisbach calculation method.	31
3.5. Hydraulic Analysis of The Case.	22
3.5.1. Definition of the system	
5.5.1. Definition of the system	
3.6. Methodology of work	37
3.7. Layout and defined physical properties	37
3.8. The scenario of the hydraulic system	42
CHAPTER 4 :HYDRAULIC ANALYSIS RESULT &DISCUSSION	45
4.1 Introduction	45

4.1.1. Maximum velocity points:	45
4.1.2. Minimum velocity points:	45
4.1.3. Ring main pressure loss:	45
4.2. Analysis Error! Bookmark not	defined.
4.3. Chilled water return	57
CHAPTER 5: ECONOMICAL STUDY	64
5.1. The Study Models	64
5.2. The study parameters	64
5.2.1. The projects life time	
5.2.2. The interest rate	
5.2.3. The yearly working hours	64
5.3. Assumptions Used on the Economic Study	65
5.4. The Mathematical Model for the Economical Study	65
5.5. The case study without considering inflation	69
5.6. The Case Study Considering Inflation	72
5.7 . Discussion of the economical study result	75
CHAPTER 6: CONCLUSIONS & RECOMMENDATION	77
6.1. Introduction	77
6.2. Conclusions	77
Recommendations for Future work	78
REFERENCES	79
APPENDIX A:TABLE 1: COLOR CODING FOR VELOCITY AT ALL	
SCENARIOS	82
APPENDIX B :HYDRAULIC STUDY ANALYSIS DETAILS	88
APPENDIX C • THE ECONOMIC STUDY CALCULATIONS DETAIL	S 106

List of Tables

Table 1.1: The historical time line of district systems	2
Table 1.2: Thermal conductivity of different soil types	. 16
Table 1.3: Comparison of commonly used insulation in underground piping	
Table 3.1: for pipes length and diameters	
Table 3.2: for junctions label and demand	38
Table 3.3: The case study scenarios	40
Table 4.1: comparison between the existing parameters values and the new suggest values	ted 51
Table 5.1: Tonnage price comparisons for different life times, 1800 working hours	
yearly and 10% interest rate, without considering inflation	
Table 5.2: Tonnage price comparisons for different life times, 1800 working hours	
yearly and 15% interest rate, without considering inflation	
Table 5.3: Tonnage price comparisons for different life times, 3000 working hours	
yearly and 10% interest rate, without considering inflation	.67
Table 5.4: Tonnage price comparisons for different life times, 3000working hours	
yearly and 15% interest rate, without considering inflation	
Table (5.5), Tonnage price comparisons for different life times, 5400 working hour	
yearly and 10% interest rate, without considering inflation	
Table 5.6: Tonnage price comparisons for different life times, 5400 working hours	
yearly and 15% interest rate, without considering inflation	.68
Table 5.7: Tonnage price comparisons for different life times, 1800 working hours	
yearly and 10% interest rate	.69
Table 5.8: Tonnage price comparisons for different life times, 1800 working hours	
yearly and 15% interest rate	.70
Table 5.9: Tonnage price comparisons for different life times, 3000working hours	
yearly and 10% interest rate	.70
Table 5.10: Tonnage price comparisons for different life times, 3000working hours	3
yearly and 15% interest rate	
Table 5.11: Tonnage price comparisons for different life times, 5400 working hour	S
yearly and 10% interest rate	.71
Table 5.12: Tonnage price comparisons for different life times, 5400 working hour	
yearly and 15% interest rate	.72

List of Figures

	Figure 1.1: District cooling system	1
	Figure 1.2: DHC plant arrangement.	9
	Figure 1.3: Constant flow primary distribution with secondary pumping	11
	Figure 1.4: Variable flow system	
	Figure 1.5: Single uninsulated buried pipe	13
	Figure 1.6: Single buried insulated pipe	
	Figure 1.7: two pipes buried in common conduit with air space	
	Figure 1.8: two buried pipes or conduits	
	Figure 1.9: pipes in buried trenches or tunnels	
	Figure 3.1: The AUTOCAD drawing of the case study	
	Figure 3.2: Piping network with plotting pipe length	
	Figure 3.3: Layout inside watergems v8i	
	Figure 4.1: Analysis of velocity distribution for peak load	
	Figure 4.2: Analysis of pressure loss at peak load	
	Figure 4.3: Analysis of velocity distribution at 83.1% for peak load	
	Figure 4.4: hydraulic analysis of pressure loss at 83.1% of peak load	
	Figure 4.5: hydraulic analysis of velocity at 67.7% of peak load	
	Figure 4.6: Hydraulic analysis of pressure loss at 67.7 of peak load	
	Figure 4.7: Hydraulic analysis of velocity at 50% of peak load	
	Figure 4.8: Hydraulic analysis of pressure loss at 50% of peak load	
	Figure 4.9: hydraulic analysis of velocity at 83.1% of 50% peak load	
	Figure 4.10: hydraulic analysis of pressure loss at 83.1% of 50% peak load	
	Figure 4.11: Hydraulic analysis of velocity at 67.7% of 50% peak load	
	Figure 4.12: Hydraulic analysis of pressure loss at 67.7% of 50% of peak load	52
	Figure 4.13: Analysis of velocity distribution for peak load	57
	Figure 4.14: Analysis of pressure loss at peak load.	
	Figure 4.15: Analysis of velocity distribution at 83.1% for peak load	58
	Figure 4.16: Hydraulic analysis of pressure loss at 83.1% of peak load	58
	Figure 4.17: Hydraulic analysis of velocity at 67.7% of peak load.	59
	Figure 4.18: Hydraulic analysis of pressure loss at 67.7 of peak load	59
	Figure 4.19: Hydraulic analysis of velocity at 50% of peak load.	60
	Figure 4.20: Hydraulic analysis of pressure loss at 50% of peak load	60
	Figure 4.2: hydraulic analysis of velocity at 83.1% of 50% peak load	61
	Figure 4.22: Hydraulic analysis of pressure loss at 83.1% of 50% peak load	61
	Figure 4.23: Hydraulic analysis of velocity at 67.7% of peak load	
	Figure 4.24: hydraulic analysis of pressure loss at 67.7% of 50% of peak load	62
	Figure 5.1: Tonnage price comparisons for different life times, 1800 working he	ours
y	early, 10%, and 15% interest rate, without considering inflation	
	Figure 5.2: Tonnage price comparisons for different life times, 3000 working ho	
y	early, 10%, and 15% interest rate, without considering inflation	
	Figure 5.3: Tonnage price comparisons for different life times,5400 working hou	
y	early, 10%, and 15% interest rate, without considering inflation	
	Figure 5.4: Tonnage price comparisons for different life times, 1800 working hour	
У	early, 10%, and 15% interest rate, with considering inflation	71
	Figure 5.5 Tonnage price comparisons for different life times,3000 working hour	rs.
V	early, 10%, and 15% interest rate, with considering inflation	
J	,,	. –

Figure 5.6: Tonnage price comparisons for different life times,54	400 working hours
yearly, 10%, and 15% interest rate, with considering inflation	75

List of Symbols and Appreviations

ABBREVIATION	DESCRIBTION
AACS	Air-Cooled Air-Conditioning Systems
ADDS	Absorption Driven District System
СНСР	Combined Heating, Cooling and Power
СНР	Combined Heat and Power
DCP	District Cooling Plant
DCS	District Cooling Systems
DHC	District Heating and Cooling
EDDS	Electricity Driven District System
GDHS	Geothermal District Heating Systems
HVAC	Heating Ventilation and Air Conditioning
IBCU	Individual Building Central Units
IPF	Ice packing factor within ice-slurry (wt%)
LRT	Low Return Temperature
TES	Thermal Energy Storage
WACS	Water-Cooled Air-Conditioning Systems

ABBREVIATION	DESCRIBTION
A	Annual payments, EGP
A_s	Cross section area, m ²
c	Specific heat, KJ/Kg °C
d	Burial depth to centerline of pipe or conduit, m
D	Pipes diameter, m
e	Surface roughness for pipes, m
f	Inflation rate, %
F	Friction factor, dimensionless
g	Acceleration of gravity, m/s ²
h	Convective heat transfer coefficient, KJ/s m °C
Н	Hydraulic grade line, m H ₂ O
H_{loss}	Head loss, m H ₂ O
i	Interest rate, %
i_f	Total equivalent for interest and inflation rates, %
k	Thermal conductivity, W/ m °C
K	Loss factor for fittings, dimensionless
L	Pipe length, m
n	Life time, years
q	Annual average rate of heat loss
Q	Flow rate, m ³ /s
r	Radius of pipe, m
R	Thermal resistance, m °C/W
t	Temperature, °C

ABBREVIATION	DESCRIBTION
V	Velocity, m/s
ν	Kinematic viscosity, m ² /s
ρ	Density, Kg/m ³

ABSTRACT

The objective of the present thesis is to make hydraulic analysis and economical assessment to district cooling system. the hydraulic analysis was designed by using engineering program (Bentley watergems V8i) which depended on representation of a given lengths and diameters and required flow for each building to establish the required cooling had been found that there is some problems concerning water flow rate speed inside pipes moreover, rising of pressure beyond upper limit of the allowed values of pressure. According to that modifications in network design were done to avoid this obstacle. While from the economical aspect an economical study performed and comparison were done among district cooling systems and central cooling units from side and chillers work by natural gas and others work by electricity power from the other side (the natural gas was used in Egypt because of its relative cheapness) From this economical study we discovered that district cooling system operating on natural gas better economically from the one that operating on electricity power whereas the central cooling system came in the bottom of list if it compared with district cooling system. This study found that application of this technology will increase when there is high thermal loads for area unit and that occur in high buildings.