

Ain Shams University
Faculty of Science
Department of Biochemistry

## Biochemical Role of Some Nanoparticles to Counteract Heat Stress in Wheat

#### Thesis

Submitted to faculty of Science, Ain Shams University in partial fulfillment of Ph.D degree in Biochemistry

#### By Asmaa Abd El-Kader Mahdi Mohamed Ibrahim

B.Sc. (Biochemistry / Chemistry) 2003 M.Sc. of Biochemistry 2011 Assistant Researcher, Desert Research Center

## Under the supervision of

Prof. Dr. Ibrahim Hassan Borai Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Dr. Nahla Samir Hassan Ahmed Ass. Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University Prof.Dr.Mohamed Hamed Hendawey
Professor of Biochemistry
Head of Biochemistry Unit
Plant Genetic Resources Dept.,
Desert Research Center

Dr. Taher Ahmed Salaheldin Ass. Professor of Nanotechnology Agriculture Research Center Director of Mostafa Elsayed Nanotechnology Research Center

Faculty of Science Department of Biochemistry

## **Approval sheet**

## Biochemical Role of Some Nanoparticles to Counteract Heat Stress in Wheat

### By

### Asmaa Abd El Kader Mahdi Mohamed

B.Sc. (Biochemistry and chemistry), Ain Shams University (2003)
M.Sc. (Biochemistry), Ain Shams University (2011)
Assistant Researcher, Desert Research Center

This thesis for the Ph.D. degree has been approved by:

Prof. Dr. Mamdouh Moawad Ali Hassan – Professor of Biochemistry – National Research Center

Prof. Dr. Hefnawey Taha Mansour Hefnawey – Professor of Biochemistry – Faculty of Agriculture – Zagazig University

Prof. Dr.Ibrahim Hassan Borai – Emeritus Professor of Biochemistry – Faculty of Science – Ain Shams University

Prof. Dr. Mohamed Hamed Hendawey – Professor of Biochemistry – Genetics Resources Department – Desert Research Center

Date of examination: / / 2017

## Ph. D. Thesis

Name : Asmaa Abd El Kader Mahdi Mohamed

**Title**: Biochemical role of some nanoparticles to

counteract heat stress in wheat

**Degree** : Doctor of Philosophy in Science

(Biochemistry)

Submitted to: Biochemistry Department, Faculty of Science, Ain Shams

University.

### **Supervisors**

#### Prof. Dr. Ibrahim Hassan Borai

Prof. of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University.

## Prof. Dr. Mohamed Hamed Hendawey

Prof. of Biochemistry, Head of Biochemistry Unit, Plant Genetic Resources Dept., Desert Research Center.

## Ass.Prof. Dr. Taher Ahmed Salah El Din

Ass.Prof. of Nanotechnology, Agriculture Research Center Director of Mostafa El Sayed Nanotechnology Research Center

### Ass.Prof. Dr. Nahla Samir Hassan Ahmed

Ass.Prof. of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University

**Head of Biochemistry Department** 

Prof. Dr. Ibrahim Hassan Kamal

## **Declaration**

I declare that, this thesis is the original work of the author and hasn't been made previously at this degree or any oth er university. It was valuable and beneficial for me and I wish to be like that for other authors and researchers.

Asmaa Abd El Kader

AIN SHAMS UNIVERSITY

# **Contents**

| Subject                                                                     | Page |
|-----------------------------------------------------------------------------|------|
| Acknowledgement                                                             |      |
| Abstract                                                                    |      |
| List of abbreviations                                                       |      |
| List of figures                                                             |      |
| List of tables                                                              |      |
| Introduction and aim of the work                                            | 1    |
| CHAPTER I                                                                   |      |
| Review of literature                                                        | 5    |
| I. Effect of heat stress on growth, yield and some biochemical constituents | 5    |
| 1. Plant growth and yield                                                   | 5    |
| 2. Biochemical constituents in wheat shoot                                  | 9    |
| Lipid peroxidation product (Malondialdehyde content)                        | 9    |
| Antioxidants                                                                | 10   |
| Glutathione content (GSH)                                                   | 11   |
| Glutathione S Transferase (GST) activity                                    | 13   |
| Peroxidase, catalse and superoxide dismutase isozymes                       | 14   |

| Heat shock proteins                                                                         | 18 |
|---------------------------------------------------------------------------------------------|----|
| Genetic invariability of DNA                                                                | 21 |
| 3. Biochemical constituents in wheat grains                                                 | 21 |
| Combined amino acids                                                                        | 21 |
| Minerals content                                                                            | 22 |
| II. Effect of nanoparticles application on growth, yield and some biochemical constituents. | 22 |
| Nanotechnology                                                                              | 22 |
| Types and origin of nanoparticles                                                           | 24 |
| Mode of entry of nanoparticles into plants                                                  | 26 |
| Plant growth and yield                                                                      | 27 |
| Biochemical constituents in wheat shoot                                                     | 31 |
| Lipid peroxidation product (Malondialdehyde content)                                        | 31 |
| Antioxidants                                                                                | 33 |
| Glutathione content (GSH)                                                                   | 33 |
| Glutathione S Transferase (GST) activity                                                    | 34 |
| Peroxidase, catalase and superoxide dismutase isozymes                                      | 34 |
| Heat shock proteins                                                                         | 36 |
| Genetic invariability of DNA                                                                | 37 |
| TEM analysis of nanoparticles in tissues                                                    | 39 |

| 6. Biochemical constituents in wheat grains                                                                    | 40 |
|----------------------------------------------------------------------------------------------------------------|----|
| Combined amino acids                                                                                           | 40 |
| Minerals content                                                                                               | 41 |
| III. Effect of salicylic acid conjugated with nanoparticles on growth, yield and some biochemical constituents | 42 |
| 1. Plant growth and yield                                                                                      | 42 |
| 2. Biochemical constituents in wheat shoot                                                                     | 44 |
| Lipid peroxidation product (Malondialdehyde content)                                                           | 44 |
| Antioxidants                                                                                                   | 46 |
| Glutathione content (GSH)                                                                                      | 46 |
| Glutathione S Transferase (GST) activity                                                                       | 46 |
| Peroxidase, catalase and superoxide dismutase isozymes                                                         | 47 |
| Genetic invariability of DNA                                                                                   | 48 |
| Heat shock proteins                                                                                            | 49 |
| 3. Biochemical constituents in wheat grains                                                                    | 49 |
| Combined amino acids                                                                                           | 49 |
| Minerals content                                                                                               | 50 |
| CHAPTER II                                                                                                     |    |
| Materials and methods                                                                                          | 53 |
| I. Field experiment                                                                                            | 53 |

| II. Nanoparticles preparation and characterization                                | 56 |
|-----------------------------------------------------------------------------------|----|
| 1. Copper metal nanoparticles preparation (Cu NPs)                                | 56 |
| 2. ZnO nanoparticles preparation (Zn NPs)                                         | 58 |
| 3. Magnetite nanoparticles preparation (Fe NPs)                                   | 59 |
| 4. Magnetite nanoparticles conjugated with Salicylic acid preparation (SA+Fe NPs) | 60 |
| III. Biochemical analysis                                                         | 62 |
| 1. Determination of moisture                                                      | 62 |
| 2. Lipid peroxidation product (malondialdehyde content)                           | 64 |
| 3. Antioxidants                                                                   | 64 |
| 3.1. Glutathione content (GSH)                                                    | 64 |
| 3.2. Glutathione S Transferase (GST) activity                                     | 65 |
| 3.3. Catalase, peroxidase and superoxide dismutase by native PAGE                 | 67 |
| 3.3.1. Catalase                                                                   | 67 |
| 3.3.2. Peroxidase                                                                 | 71 |
| 3.3.3. Superoxide dismutase                                                       | 75 |
| 4. Heat shock proteins                                                            | 79 |
| 5. Genetic invariability of DNA                                                   | 82 |
| 6. Transmission electron microscope (TEM analysis) of                             | 86 |

| tissue nanoparticles              |     |
|-----------------------------------|-----|
| 7. Combined amino acids in grains | 90  |
| 8. Minerals content               | 93  |
| IV. Statistical analysis          | 93  |
| CHAPTER III                       |     |
| Results                           | 94  |
| Discussion                        | 194 |
| CHAPTER IV                        |     |
| Summary and conclusion            | 234 |
| References                        | 243 |
| Arabic summary                    |     |
| Arabic abstract                   |     |

## Acknowledgment

"First and foremost, thanks are due to Allah, the beneficent and merciful"

I would like to express my deepest appreciation and gratitude to **Prof.Dr. Ibrahim Hassan Borai**, Professor of Biochemistry, Faculty of Science, Ain Shams University, for his kind hearted support, supervision, guiding and support throughout all stages of work.

Deep thanks and grateful to **Prof.Dr. Mohammed Hamed Hendawey,** Professor of Biochemistry, and Head of Biochemistry unit, Desert Research center for his kind, generous manner, patience, guiding, encouragement, beneficial support and sincere advice.

Deep thanks and grateful to **Ass. Prof. Dr. Taher Ahmed Salah El Din,** Assistant.Professor of Nanotechnology, and Head of nanotechnology laboratory RCFF, Agriculture research Center, for his kind, generous manner, patience, guiding, encouragement, beneficial support and sincere advice.

Deep thanks and appreciation to **Ass. Prof. Dr. Nahla Samir Hassan**, Assistant Professor of Biochemistry, Faculty of Science, Ain Shams University, for her kind supervision, advice, guidness, patience, support, revising the thesis and providing facilities during the whole work.

I'd like to express my great thanks and appreciation to all staff members of Biochemistry unit, Desert Research Center for their help, support and cooperation in all phases of the work. And Special thanks to members of nanotechnology laboratory, RCFF and **Dr. Khaled Farrouh** for their help and all facilities in my work.

Finally, I'd like to express my deep gratitude to all my family members especially, my father, my mother, my father—in-law and my mother-in-law, my husband and my daughters (**Mariam & Nouran**) for their patience, support and encouragement during the whole period of this research.

Asmaa Abd El Kader

## **Abstract**

It is well known that, application of nanotechnology in the agriculture sector has promising achievements in the near future. Through that, utilization of biocompatible NPs as a new approach to counteract heat stress of wheat that might increase yield quantity and quality was used. The well designed, prepared and characterized biocompatible NPs concentrations and size were Cu NPs <50 nm (0.25, 0.50, 0.75, 1.0 and 10 ppm), ZnO NPs <100 nm (0.25, 0.50, 0.75, 1.0 and 10 ppm) and conjugation between SA (100 ppm) and Fe<sub>3</sub>O<sub>4</sub> <50 nm (0.25, 0.50, 0.75, 1.0 and 10 ppm) as well as tap water as a control. The NPs' treatments were applied to two wheat cultivars Sids1 (heat tolerant) and Gemmeiza7 (heat sensitive).

Two consecutive seasons were carried out during 2013/2014 and 2014/2015 at Agricultural Experimental Station of Desert Research Center (DRC) located in El Kharga Oasis, El Wadi El Gadeed Governorate in Egypt.

Results showed that all NPs treatments had positive impact on all growth traits and grain yield. Sids1 surpassed Gemmeiza7 at the quality of wheat grains (essential, non-essential amino acids and minerals content). However, Gimmeza7 exceeded Sids1 at the yield quantity especially by application of SA+Fe NPs 0.50ppm. These effects were associated with heat tolerance and the best survival in wheat cultivars. There was an increase in (glutathione content), antioxidant enzymes (Glutathione -S- Transferase, catalase, peroxidase and superoxide dismutase) and/or decline in malondialdehyde content.

Heat shock proteins were investigated, the molecular weights ranged between (19.00 to 228.0 kDa) for Sids1 cultivar, the more intensive band was (45.20 kDa for Sids1) in control and all NPs treatments but there was a destructive effect on polypeptides of Gimmeza7 cultivar due to NPs application.

Also, data reported that 16 amino acids were detected in grains including essential and non-essential amino acids. There was a marked increase in some amino acids content in Sids1 cultivar only as a result of NPs treatments but the same treatments had negative effect on Gimmeza7 amino acids which were less than control.

The ISSR technique showed that NPs caused a defragmentation to some nucleotide bases which appeared as a unique amplified fragment however; the repairing system of plant may be tolerate this slight change and compensate it.

The TEM analysis microscopy to leaves showed that some NPs with concentrations <10ppm reported less accumulation, enlargement to starch grains, increase thickness to cell walls and vacuolation phenomena. The translocation of entered NPs was clarified at micrographs (cell wall, cytoplasm, nucleus and chloroplast). Minerals content in grains at both cultivars were also investigated. It was observed that, all nanoparticles treatments increased minerals content in grains.

Our study indicated that, the treatments also increased grains' minerals especially the Zn, Ca and Fe in both cultivars.

# List of abbreviations

| APS    | Ammonium persulphate              |
|--------|-----------------------------------|
| AF     | Amplified fragment                |
| ASA    | Acetyl salicylic acid             |
|        |                                   |
| BA2H   | Benzoic acid 2 - hydroxylase.     |
| CAT(s) | Catalase(s)                       |
| CDNB   | 1- Chloro-2,4- dinitrobenzene     |
| Ch a   | Chlorophyll a                     |
| Ch b   | Chlorophyll b                     |
| CNT(s) | Carbon nano tube (s)              |
| CTAB   | Cetyl trimethylammonium bromide   |
| Dr.wt  | Dry weight                        |
| DLS    | Dynamic light scattering          |
| DTNB   | 5,5'-dithiobis nitro benzoic acid |
| EC     | Electrical Conductivity           |
| ENPs   | Engineered nanoparticles          |
| Fr.wt  | Fresh weight                      |
| Fad    | Faddan                            |
| GB     | Glycine betaine                   |
| На     | Hectare                           |
| HMW    | High molecular weight             |
| HSPs   | Heat Shock Proteins               |
| IAA    | Indole Acetic Acid                |
| ISSR   | Inter simple sequence repeats     |
| kDa    | Kilo Dalton                       |
| LMW    | Low molecular weight              |
| M      | Molar                             |

| MDA        | Malondialdehyde                              |
|------------|----------------------------------------------|
| mM         | Millimole                                    |
| MS medium  | Murashige and Skoog medium                   |
| M.wt (s)   | Molecular weight (s)                         |
| NBT        | Nitro blue tetrazolium                       |
| nm         | Nanometer                                    |
| PGR        | Plant growth regulators                      |
| POD(s)     | Peroxidase(s)                                |
| ppm        | Part per million (mg/l)                      |
| ppb        | Part per billion (µg/l)                      |
| PDI        | Polydispersity index                         |
| θ          | Theta                                        |
| RAPD       | Random amplified polymorphic DNA             |
| ROS        | Reactive oxygen species                      |
| RWC        | Relative water content                       |
| SA         | Salicylic acid                               |
| SDS – PAGE | Sodium dodecyl sulphate – polyacrylamide gel |
|            | electrophoresis                              |
| SOD(s)     | Superoxide dismutase(s)                      |
| Т          | Ton                                          |
| TBARS      | Thiobarbituric acid reactive substances      |
| TEMED      | N, N, N', N' - Tetramethylenediamine         |
| TMBZ       | 3,3',5,5'-Tetramethylbenzidine               |
| Tris       | Tris hydroxymethyl amino methane             |
| v/v        | Volume per volume                            |
| w/v        | Weight per volume                            |
| w/w        | Weight per weight                            |

# List of tables

| Table<br>number   | Title                                                                                                                                         | Page |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table (1)         | Minimum $(T_{min})$ , optimum $(T_{opt})$ and maximum $(T_{max})$ temperatures for various reproductive phases in wheat.                      | 7    |
| Table (2)         | Mechanical and chemical analysis of the experimental soil and chemical analysis of underground irrigation water at El-Wadi El-Gadeed          | 51   |
| Table (3)         | Metrological data of El Wadi El Gadeed region for two seasons 2013/2014- 2014/2015                                                            | 51   |
| Table (4)         | Effect of Cu and Zn nanoparticles on growth traits of two wheat cultivars at first growth stage under heat stress conditions                  | 105  |
| Table (5)         | Effect of Fe and SA+Fe nanoparticles on growth traits of two wheat cultivars at first growth stage under heat stress conditions               | 106  |
| Table (6)         | Effect of Cu and Zn nanoparticles on growth traits of two wheat cultivars at second growth stage under heat stress conditions                 | 107  |
| Table (7)         | Effect of Fe and SA+Fe nanoparticles on growth traits of two wheat cultivars at second growth stage under heat stress conditions              | 108  |
| Table (8)         | Effect of nanoparticles on malondialdehyde content of two wheat cultivars at both growth stages under heat stress condition                   | 112  |
| Table (9)         | Effect of nanoparticles on reduced glutathione (GSH) content of two wheat cultivars at both growth stages under heat stress conditions        | 117  |
| <b>Table</b> (10) | Effect of nanoparticles on glutathione S transferase (GST) activity of two wheat cultivars at both growth stages under heat stress conditions | 122  |
| <b>Table</b> (11) | Effect of nanoparticles on peroxidase isozymes of Sids1 cultivar under heat stress conditions                                                 | 130  |
| <b>Table (12)</b> | Effect of nanoparticles on peroxidase isozymes of Gimmeza7 cultivar under heat stress conditions                                              | 131  |
| <b>Table (13)</b> | Effect of nanoparticles on superoxide dismutase isozymes of Sids1 cultivar under heat stress conditions                                       | 132  |