Cardiopulmonary Rehabilitation versus Cardiac Rehabilitation in Patients Suffering from Coronary Artery Diseases and Chronic Obstructive Pulmonary Disease

Thesis

Submitted for Partial Fulfillment of M Sc Degree in Chest Diseases

By

Karim Hossam El-Din Abdel Fattah Abdel Aziz

M.B., B.Ch, M Sc

Supervised By

Professor/ Yasser Mostafa Mohamed

Head of chest department & Professor of Chest Diseases Ain Shams University

Doctor/Hala Mohamed Salem

Assist. Professor of chest diseases Ain Shams University

Doctor/ Hazem Mohamed Khorshid

Lecturer of Cardiology Ain Shams University

Faculty of Medicine Ain Shams University 2017

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Professor/ Vasser Mostafa**Mohamed, Professor of Chest Diseases, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Doctor/Tbala Mohamed Salem**, Assist. Professor of chest diseases, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Doctor/ Hazem Mohamed Khorshid**, Lecturer of Cardiology, Ain
Shams University, for his great help, active participation
and guidance.

My sincere thanks also goes to **Dr.Riham**Thazem Raafat, Lecturer of chest diseases, Ain shams university, for her advices, ideas and guidance that provided to be a landmark effort towards the success of my research.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Karim Hossam El-Din Abdel Fattah Abdel Aziz

List of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	9
Introduction	1
The aim of the study	17
Review of Literature	
• COPD	18
 Muscle Weakness and Loss of Muscle Mass in CO Patients. 	
Pulmonary Rehabilitation	
Coronary Heart Disease	80
Cardiac Rehabilitation	100
Patients and Methods	112
Results	119
Discussion	136
Summary	147
Conclusion	149
References	150
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	mMRC dyspnea scale	27
Table (2):	Classification of airflow limits severity in COPD (Based on pronchodilator FEV ₁)	ntion post-
Table (3):	Difference between UA, NSTEMI STEMI	
Table (4):	Myocardial infarction: Irreversimyocyte necrosis	
Table (5):	Bruce Protocol (Maximal Table)	114
Table (6):	Showing the range of age and get for all patients	
Table (7):	Showing the EF(%), FEV1(lir FEV1/FVC(%), resting HR(bpm), METS SGRQ pre-rehabilitation of all patients.	and
Table (8):	Showing the EF(%), FEV1(lit FEV1/FVC(%), resting HR(bpm), M and SGRQ post rehabilitation of patients.	ETs fall
Table (9):	Comparison between group I and gr II as regard age and EF	roup 122
Table (10):	Showing non-significant differ between 2 groups as regard FEV1(lit FEV1/FVC(%), resting HR(bpm), M SGRQ in pre rehabilitation	ence ers), ETs,
Table (11):	Showing relation between 2 group post rehabilitation as regard FEV liters), FEV1/FVC (%), METs SGRQ post rehabilitation with statistical significant. The change the resting HR was statistic significant.	71(in and no e in cally

List of Eables cont...

Table No.	Title	Page No.
Table (12):	Showing high statistical signification of the state of th	ters),) and ce as
Table (13):	Showing highly significant static correlation between FEV1 (life FEV1/FVC(%), resting HR(bpm), I and SGRQ in group 2 pre and rehabilitaion	ters), METs post

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Inflammatory and immune involved in COPD	
Figure (2):	Airflow limitation in COPD	20
Figure (3):	Mucociliary effects in the COPD air	way 21
Figure (4):	Mucus-clogged bronchi (bronchitis).	22
Figure (5):	Causes of COPD	23
Figure (6):	COPD assessment test (CAT)	28
Figure (7):	GOLD ABCD assessment tool	30
Figure (8):	CXR hyperinflated chest	33
Figure (9):	CT hyperinflated chest	34
Figure (10):	Treatment options for COPD	35
Figure (11):	Treatment according to C classification	
Figure (12):	Mechanisms of cachexia in COPD	46
Figure (13):	Mechanism of hypoxia causing mwasiting	
Figure (14):	Risk factors of coronary heart disea	
Figure (15):	Showing difference between atherosclerotic artery, venerable p and stable plaque	non laque
Figure (16):	Pain Mechanism in Ischemic Disease	Heart
Figure (17):	Showing relation between 2 groungered age(years).	_
Figure (18):	Showing relation between 2 grouregard ejection fraction(%)	
Figure (19):	Showing relation between 2 group regard FEV1(liters), FEV1/FV resting HR(bpm), METs, SGRQ is rehabilitation.	C(%), n pre

List of Figures cont...

Fig. No.	Title	Page	No.
Figure (20):	Showing relation between 2 groupost rehabilitation as regard (liters), FEV1/FVC(%), resting and SGRQ post rehabilitation wis statistical significant	FEV1 METs ith no	127
Figure (21):	Showing relation between FEV1 FEV1/FVC in group 1 pre and rehabilitation.	post	129
Figure (22):	Showing relation between resting and SGRQ in group 1 pre and rehabilitation.	l post	129
Figure (23):	Showing relation between MEZ group 1 pre and post rehabilitation		130
Figure (24):	Showing relation between FEV1(I FEV1/FVC(%)in group 2 pre and rehab	l post	132
Figure (25):	Showing relation between ME's group 2 pre and post rehab		132
Figure (26):	Showing relation between r HR(bpm) and SGRQ in group 2 pr post rehab.	e and	133
Figure (27):	Showing relation between FEV post rehab and resting HR post reh	1/FVC	
Figure (28):	Showing relation between resting post rehab and METs post rehab	_	134
Figure (29):	Showing relation between Mets rehab and SGRQ post rehab	-	135

List of Abbreviations

Full term Abb. ACS...... Acute coronary syndrome ADP...... Adenosine diphospahte AAT...... Alpha1-antitrypsin AACVPR American College of Cardiovascular and Pulmonary Rehabilitation $ATP.....Adenosine \ triphosphate$ BMI.....Body mass index CABG...... Coronary artery bypass graft CR......Cardiac rehabilitation CPET Cardiopulmonary exercise testing CVD Cardiovascular disease CAT...... COPD Assessment Test COPD...... Chronic obstructive pulmonary disease CRP...... C-reactive protein CSA..... Cross-sectional area DASI Duke Activity Status Index ECG Electrocardiogram Echo..... Echocardiography ESC..... European society for cardiology EASD European Association for the Study of DiabetesPPARa.....Factor peroxisome proliferator-activated receptor α FEV1..... Forced expiratory volum in 1st second FVC...... Forced vital capacity HbA1c Glycated hemoglobin GOLD......Global initiative for chronic obstructive lung disease HDL High density lipoprotine HRQL...... Health-Related Quality of Life HRR Heart Rate Reserve HDL High density lipoprotein HRCT...... High-resolution CT

List of Abbreviations cont...

Abb.	Full term
HR	Haart rata
	. Health-Related Quality of Life
	. Insulin-hetated Quanty of Eije . Insulin-like growth, acidosis. Ub =
<i>IGI</i> '	ubiquitin;
ICFR	. Insulin-like growth factor receptor;
	Inspiratory muscle training
	. Guideline directed medical treatment
	. Incremental shuttle walk test
	Insulin-like growth factor-I
<i>IFN-γ</i>	,
<i>IL-1, IL-6, IL-8</i>	
	. Intracellular cyclic adenosine
	monophosphate
ICA	. Invasive coronary angiography
	. Ischemic Heart Disease
	. Left bundle branch block
	. Left ventricular hypertrophy
	. Low density lipoprotein
	. Matrix-metalloproteinases
	. Metabolic equivilants of threshold
<i>MHC</i>	. Myosin heavy chain;
<i>MI</i>	. Myocardial infarction
<i>Mph</i>	
<i>NMES</i>	. Neuromuscular electrical stimulation
NF-κB	. Nuclear factor κΒ
<i>NIV</i>	Noninvasive ventilation
NSTE-ACS	Non-ST-elevation acute coronary syndrome
NSTEMI	Non ST segment elevation myocardial
	infarction
	. Nuclear factor-kappa B
	. Optimal medical therapy
PCI	. Percutaneous coronary interventiom

List of Abbreviations cont...

Full term Abb. VO_2 Peak oxygen consumption QoL Quality of life RPE......Rate of Perceived Exertion ROS...... Reactive oxygen species RBBB......Right bundle branch block 6MWT...... Six minute walk test SGRQ......St. George's Respiratory Questionnaire SCAD Stable coronary artery disease STEMI......ST segment elevation myocardial infarction TRH Target Heart Rate 99mTc.....Technetium-99mTNF...... Tumor necrosis factor; TNFR I and II Tumor necrosis factor receptor I and II. TC Total cholesterol TNF- α $Tumor\ necrosis\ factor\ alpha$ Ub Ubiquitin UA...... Unstable angina WHO World health organization

Abstract

Coronary artery disease (CAD) is one of the leading causes of mortality in COPD cases. Smoking undoubtedly, it is significantly related to causation of chronic bronchitis and emphysema and also is a major risk factor for CAD. In Egypt majority of deaths result from ischemic heart attacks and other cardiovascular diseases, and respiratory diseases caused by tobacco.

Cardiac rehabilitation is recommended according to the ESC as it is associated with a reduction in morbidity. It includes a systematic approach to the measurement and treatment of coronary risk factors, along with the better-known exercise training component and nutritional.

In this prospective study randomized case-control study which was conducted at a sample of 40 patients collected randomly from Ain shams university hospitals (outpatient clinic). Patients were assessed by clinical examination, ECG, ECHO, spirometry, SGRQ and modified Bruce protocol then they were divided into 2 groups: group 1 (cardiac rehabilitation) and group 2 (cardiopulmonary rehabilitation). Patients were subjected to 8-12 weeks of rehabilitation and reassessed by spirometry, modified Bruce protocol and SGRQ.

Both groups improved as regard spirometry (FEV1 FEV1/FVC), SGRQ and METs but there was there statistical significant improvement as regard resting heart rate in cardiopulmonary rehabilitation group.

Keywords: Unstable angina – Right bundle branch block -Myosin heavy chain - Insulin-like growth factor receptor

INTRODUCTION

Vhronic obstructive pulmonary disease (COPD) is common Itreatable and preventable chronic disease characterized by persistent and progressive airflow limitation caused by increase airway and lung inflammatory response to noxious particles and gases. The main risk factor for COPD is tobacco smoking; other risk factors include outdoor, occupational and indoor air way pollution (GOLD, 2017).

COPD is a major cause of mortality, morbidity and significant cost to health systems. The projection for 2020 indicates that COPD will be the third leading cause of death worldwide (from sixth in 1990). Although COPD is a preventable and treatable chronic disease, but is frequently under diagnosed and under-treated in clinical practice (Raherison and Girodet, 2009).

Diagnosis of COPD depends on symptoms, history of exposure, family history of COPD and Spirometer. Symptoms of COPD include: dyspnea; progressive and persistent, chronic cough which may be intermittent and not productive, chronic sputum production and attacks of exacerbation (acute worsening of the symptoms) COPD is classified according to severity of symptoms, spirometry and assessment of comorbidity into classes A,B,C and D (GOLD, 2017).

Pulmonary rehabilitation is a broad therapeutic concept. It is defined by the American Thoracic Society and the

European Respiratory Society as a comprehensive intervention based on a thorough patient assessment followed by patient tailored therapies that include, but are not limited to, exercise training and behavior change, designed to improve the physical and psychological condition of people with chronic respiratory disease and to promote the long-term adherence to healthbehaviors (ACCP/AACVPR enhancing evidence guidelines. Chest 1997) and it is recommended in the management of all classes of COPD according to GOLD (2017).

Coronary Artery Disease also known as Ischemic Heart Disease is a group of diseases that include: stable angina pectoris, unstable angina pectoris, or an MI. Stable coronary artery disease (SCAD) is defined as an established pattern of angina pectoris, a history of myocardial infarction (MI), or the presence of plaque documented by catheterization (Lloyd-Jones et al., 2009).

Difference between stable and unstable angina (UA) is that the latter significantly increases the risk of an acute coronary event in the short term. The characteristics of UA have been described in the recent ESC Guidelines for the management of ACS in patients presenting without persistent ST-segment elevation.

Myocardial infarction (MI) is defined as detection of rise/or fall of cardiac biomarker values with at least one value

above the 99th percentile of upper reference limit and with at least one of the following: Symptoms of ischemia, New or presumable new significant ST-T changes or new LBBB, Development of pathological Q waves in the ECG, Imaging evidence of new loss of viable myocardium, identification of an intracoronary thrombus by angiography or autopsy. Based on ECG it is differentiated into 2 groups STEMI and NSTE.

Atherosclerotic cardiovascular disease (CVD) is now the leading cause of death worldwide, it is on the rise and has become a true pandemic that respects no borders (*Lloyd-Jones* et al., 2009). CVD was responsible for 42% of all deaths below 75 years of age in European women and for 38% of all deaths at 75 years in men (Hamm et al., 2016). Risk factors for CAD include Smoking, hypertension, abnormal cholesterol and high triglycerides, Obesity and Lack of physical activity (Campeau There is overwhelming evidence that *1976*). comprehensive cardiac rehabilitation (CR) is associated with a reduction in both cardiac mortality (26-36%) and total (13-26%).(European cardiovascular mortality statistics; 2008)

Coronary artery disease (CAD) is one of the leading causes of mortality in COPD cases. Smoking undoubtedly, it is significantly related to causation of chronic bronchitis and emphysema and also is a major risk factor for CAD. In Egypt majority of deaths result from ischemic heart attacks and other cardiovascular diseases, and respiratory diseases caused by tobacco.