

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

EFFECT OF AXIAL COMPRESSION STRESS ON THE SHEAR BEHAVIOR OF HIGH STRENGTH FIBER REINFORCED CONCRETE T-BEAMS

BY Omar Assem Mostafa Kamal Abdelalim Structural Engineer

A Thesis

Submitted in partial fulfillment for the requirements of the Degree of Master of Science in civil engineering (Structural)

Supervised by

Prof. Dr. Omar Ali Mousa EL-Nawawy

Emeritus Professor of R.C. Structures Faculty of Engineering Ain Shams University

Prof. Dr. Ibrahim Galal Shaaban

Professor of R.C. Structures
Head of Civil Department
Faculty of Engineering of Shoubra
Banha University

Dr. Ahmed Hassan Ghalab

Associate Prof. of R.C. Structures Faculty of Engineering Ain Shams University

> Faculty of Engineering Ain Shams University Cairo-2008

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, on March 2008 for the degree of Master of Science in Civil Engineering (Structural).

The work included in this thesis was carried out by the author in the Department of Civil Engineering (Structural Division), Cairo University, from November 2006 to February 2007.

No part of this thesis has been submitted for a degree or qualification at any other University or Institute.

Date : / / 2008

Name: Omar Assem Abdelalim

Signature:

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

APPROVAL SHEET

REINFORCED CONCRETE T-BEAMS

: Omar Assem Mostafa Kamal Abdelalim

: Master of Science in Civil Engineering (structural)

: EFFECT OF AXIAL COMPRESSION STRESS ON THE SHEAR BEHAVIOR OF HIGH STRENGTH FIBER

Examiners Committee:	Signature
Prof. Dr. Shaker Ahmed EL Behairy Emeritus Professor of R.C. Structures Ain Shams University	••••••
Prof. Dr. Akram Mohamed Torky Professor of R.C. Structures Cairo University	••••••
Prof. Dr. Omar Ali Mousa El Nawawy Emeritus Professor of R.C. Structures Ain Shams University (Supervisor)	••••••
Prof. Dr. Ibrahim Galal Shaaban Professor of R.C. Structures Head of Civil Department Banha University (Supervisor)	••••••

Date: / / 2008

Thesis

Student Name

Thesis Title

INFORMATION ABOUT THE RESEARCHER

Name: Omar Assem Mostafa Kamal Abdelalim

Date of Birth: July 26th, 1983

Place of Birth: Cairo, Egypt

Qualifications: B. Sc. Degree in civil Engineering (Structural Eng.) Faculty of

Engineering, Ain Shams University (2005)

Present Job: Structural Engineer, Dar Al-Handasah Consultant

Signature:

ACKNOWLGMENTS

First of all, I would like to thank God for every gift bestowed on me...

Next, I would like to extend my warmest heartfelt gratitude to all my family especially my parents who stood by me and supported me in every step of my life. I would like to deeply thank them and convey my sincere appreciation for their assistance, encouragement, support, understanding, and patience.

Moreover, I would like to express my sincerest appreciation to my advisors, Prof. Dr. Omar El-Nawawy and Prof. Dr. Ibrahim Shaaban for their guidance, continuous, valuable guidance, and the investments, giving me the opportunity to be involved in such interesting research.

I would like to extend sincere thanks to my advisor, Dr. Ahmed Ghalab for providing the guidance necessary to complete this research and also for his constant encouragement, support, and friendship which was the motivating force that kept work on my thesis in force until completion. I would like to express my admiration and thanks for his loyalty and trustfulness.

I would like to thank the Concrete Research Laboratory, Cairo University for supporting me during my research. I would like to thank those who helped and improved the means of casting and testing the samples. I am also grateful to those unmentioned others for contributing in countless ways to my writing and being interested in my research. To all of those contributors, I am most grateful.

I believe that I have given my utmost effort in developing this research as accurately and truthfully as possible. Moreover, I am surely personally responsible for the conclusions and opinions expressed here.

Finally, I'd like to dedicate this work to my beloved grandfather as a taken of appreciation... I would like to extend my warmest heartfelt gratitude to such an honored...I was really fortunate to receive the benefit of his spirit and intelligence.

Omar Assem Abdelalim

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL DEPARTMENT

Abstract of the M.Sc. Thesis Submitted by

Eng. / Omar Assem Abdelalim

Title of the thesis:

EFFECT OF AXIAL COMPRESSION STRESS ON THE SHEAR BEHAVIOR OF HIGH STRENGTH FIBER REINFORCED CONCRETE T-BEAMS

ABSTRACT

The effect of axial compression stress on the shear behavior of High Strength Steel Fiber Reinforced Concrete T-beams was experimentally and theoretically evaluated in this study. The main studied factors were the volume ratio of the steel fiber, the stirrups ratio and the flange width of the T-beam section. Ten samples of high strength fiber reinforced concrete beams with clear span of 1.5m and with cross-section of 10x17cm while the flange width changed between 30 and 40cm. All the tested beams were over-designed in flexure and compression in order to ensure shear failure. The studied beams were tested under two third point loads.

The results showed that taking the axial compression stress into consideration changes the behavior of the concrete beams to shear. This axial compression stress reduced the cracks width and crack propagation. The addition of fiber to the beams without stirrups increased the stiffness of the beams and increased the cracking and the ultimate strength of the studied beams. For the beams with stirrups, the effect of increasing the fiber volume ratio to 2% was less than that of 1%. Also, it was found that the effect of adding stirrups on the beam properties decreases as the fiber volume ratio in the beam increases. Increasing the flange width didn't affect the shear behavior of the studied beams.

Equations proposed by Codes were used to evaluate the experimental results obtained while the equations proposed by previous studies were examined and modified to predict the shear ultimate strength of High strength Concrete under axial compression restrains. The modified equations showed a good prediction for the shear strength of the HSFRC beams.

v

TABLE OF CONTENTS

ACKNO	OWLEGMENTS	iii
ABSTR	ACT	v
TABLE	OF CONTENTS	vi
LIST O	F FIGURES`	X
LIST O	F TABLES	xiii
CHAPT	ER 1: INTRODUCTION	
1.1	Background	2
1.2	Purpose of Investigation	3
1.3	Plan of Presentation	4
СНАРТ	ER 2: LITERATURE REVIEW	
2.1	Introduction	6
2.2	High Strength Concrete	6
2.3	Basic Shear Theories	10
2.4	Types of Fibers	24
2.5	Effect of Steel Fibers on Concrete behavior	29
2.6	Effect of stirrups on concrete behavior	42
2.7	Effect of Flange Width on concrete behavior for T-Beams	45
2.8	Effect of Axial Compression Stress on concrete behavior	48
СНАРТ	ER 3: EXPERIMENTAL WORK	
3.1	Introduction	50
3.2	Materials	50
3.3	Mixes	50
3.4	Mixing and Preparation of beams	51
3.5	Instrumentation and Testing Procedure	54
3.6	Dimensions, reinforcement details and loading of the studied be	ams 55
СНАРТ	ER 4: EXPERIMENTAL RESULTS	
4.1	Introduction	59
4.2	Cracking Patterns	
4	\cdot 2.1 Effect of axial compression stresses (f_a)	60
4	\cdot 2.2 Effect of fiber content (V_t)	61

4.2	3 Effect of web reinforcement (ρ_{st})	63
4.2.4	4 Effect of Flange width67	
4.3	Load-deflection relationship	
4.3.	1 Effect of axial compression stresses (f_a)	69
4.3.2	2 Effect of fiber content (V_f)	69
4.3.	3 Effect of web reinforcement (ρ_{st})	69
4.3.4	4 Effect of Flange width	75
4.4	The Cracking and the Ultimate Load	
4.4.	1 Effect of axial compression stresses (f_a)	77
4.4.	2 Effect of fiber content (V_f)	78
4.4.	3 Effect of web reinforcement (ρ_{st})	78
4.4.	4 Effect of Flange width	79
4.5	Mode of Failure	
4.5.	1 Effect of axial compression stresses (f _a)	80
4.5.	2 Effect of fiber content (V_f)	80
4.5	3 Effect of web reinforcement (ρ_{st})	81
4.5.4	4 Effect of Flange width	82
СНАРТЕК	R 5: DISCUSSION OF TEST RESULTS	
5.1	Introduction	83
5.2	Discussion of results of the tested beams	84
5.2.1	Y 47	
	5.2.1.1 Cracking Pattern	
	5.2.1.2 Load-Deflection behavior	
	5.2.1.3 Cracking and ultimate strength	
:	5.2.1.4 Mode of Failure	86
	Effect of fiber content (V_f)	
:	5.2.2.1 Without web RFT	
	5.2.2.1.1 Cracking Pattern	
	5.2.2.1.2 Load-Deflection behavior	87

5.2.2.1.3	Cracking and ultimate strength	87
5.2.2.1.4	Mode of Failure	88
5.2.2.2 With v	web RFT	
5.2.2.2.1	Cracking Pattern	89
5.2.2.2.2	Load-Deflection behavior	
5.2.2.2.3	Cracking and ultimate strength	89
5.2.2.2.4		
5.2.3 Effect of w	eb RFT	
5.2.3.1 Witho	out fibers	
5.2.3.1.1	Cracking Pattern	91
5.2.3.1.2	Load-Deflection behavior	91
5.2.3.1.3	Cracking and ultimate strength	91
5.2.3.1.4	Mode of Failure	92
5.2.3.2 With 1	fiber content	
5.2.3.2.1	Cracking Pattern	93
5.2.3.2.2	Load-Deflection behavior	93
5.2.3.2.3	Cracking and ultimate strength	94
5.2.3.2.4	Mode of Failure	95
5.2.3.3 With 1	fiber content=1% and flange width=400mm	
5.2.3.3.1	Cracking Pattern	96
5.2.3.3.2	Load-Deflection behavior	96
5.2.3.3.3	Cracking and ultimate strength	96
5.2.3.3.4	Mode of Failure	97
5.2.4 Effect of Fl	ange width	
5.2.4.1 Crack	ing Pattern	99
5.2.4.2 Load-	Deflection behavior	99
5.2.4.3 Crack	ing and ultimate strength	99
5.2.4.4 Mode	of Failure	99

CHAPTER 6: THEORETICAL ANALYSIS 6.1 6.2 Methods to calculate the ultimate shear strength of FRC beams 101 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.3 6.3.1 **CHAPTER 7: CONCLUSIONS** 7.1 7.2

REFERENCES

7.3

LIST OF FIGURES

Figure (2-1) Internal Forces in Beam	. 10
Figure (2-2) Distribution of flexural shear stresses	. 11
Figure (2-3) Principal Stresses	. 12
Figure (2-4a) Stress Trajectories	. 13
Figure (2-4b) Potential Crack pattern	. 13
Figure (2-5) A Cracked Beam without Shear Reinforcement	. 14
Figure (2-6) A Cracked Beam with Shear Reinforcement	. 14
Figure (2-7) Internal Forces in a Cracked Beam	. 15
Figure (2-8) Effect of a/d on shear for beams without shear reinforcement	. 18
Figure (2-9) Shear Failure Modes	. 19
Figure (2-10) Shear Strength vs. Longitudinal Reinforcement	. 21
Figure (2-11) Shear Strength vs. a/d	. 22
Figure (2-12) Distribution of Internal Shears of Beam with Shear Reinforcement	. 23
Figure (2-13) Fiber-paste specimens	. 31
Figure (2-14) Water Permeability test rig	. 33
Figure (2-15) General view of the cell.	33
Figure (2-16) Deformation of tension reinforcement after the diagonal tension	
crack has extended to the level of the tension reinforcement	. 42
Figure (3-1) Types of steel fibers available in Egypt	. 50
Figure (3-2) Stages of casting a typical beam	. 52
Figure (3-3) Test setup with a typical test beam	. 55
Figure (4-1) The cracking pattern of group G1beams	. 61
Figure (4-2) The cracking pattern of group G2 beams	. 62
Figure (4-3) The cracking pattern of group G3 beams	. 63
Figure (4-4) The cracking pattern of group G4 beams	. 63
Figure (4-5) The cracking pattern of group G5 beams	. 64
Figure (4-6) The cracking pattern of group G6 beams	. 65
Figure (4-7) The cracking pattern of group G7 beams	. 66
Figure (4-8) The cracking pattern of group G8 beams	. 66
Figure (4-9) Simplified load-deflection curve for tested beam	. 68
Figure (4-10) The Load-Deflection curves of Group1 beams	. 69
Figure (4-11) The Load-Deflection curve of Group2 beams	. 70
Figure (4-12) The Load-Deflection curve of Group3 beams	. 71
Figure (4-13) The Load-Deflection curve of Group 4 beams	. 73
Figure (4-14) The Load-Deflection curve of Group 5 beams	. 73

Figure (4-15) The Load-Deflection curve of Group 6 beams
Figure (4-16) The Load-Deflection curve of Group 7 beams
Figure (4-17) The Load-Deflection curve of Group 8 beams
Figure (4-18) Comparison between Cracking and Ultimate loads of tested beams 77
Figure (5-1) Relation between Load & Axial Compression Stress
Figure (5-2) Relation between Load & Fiber content
Figure (5-3) Relation between Load & Fiber content (with web RFT)90
Figure (5-4) Relation between Load & Web RFT
Figure (5-5) Relation between Load & Web RFT (at 1% fibers)
Figure (5-6) Relation between Load & Web RFT (at 2% fibers)
Figure (5-7) Relation between Load & Web RFT (Increasing web RFT)
Figure (5-8) Relation between Load & flange width
Figure (6-1) Relation between the experimental and predicted results from the
ECP [2007] equation with and without the limit (factor < 1.5) 109
Figure (6-2) Relation between the experimental and predicted results from the
ACI [2005] equation
Figure (6-3) Relation between the experimental and predicted results from the
ECP [2007] equation before and after modification (complete value
of qcu)110
Figure (6-4) Relation between the experimental and predicted results from
Sharma [1986] equation multiplied by the factor (1+0.07 N/Ac) 116
Figure (6-5) Relation between the experimental and predicted results from
Narayanan and Darwish [1987] equation multiplied by the
factor (1+0.07 N/Ac)
Figure (6-6) Relation between the experimental and predicted results from
Ashour [1992] equation multiplied by the factor (1+0.07 N/Ac) 117
Figure (6-7) Relation between the experimental and predicted results from
Shin [1994] equation multiplied by the factor (1+0.07 N/Ac) 117
Figure (6-8) Relation between the experimental and predicted results from
Oh et al [1998] equation multiplied by the factor (1+0.07 N/Ac) 118
Figure (6-9) Relation between the experimental and predicted results from
Madhusudan [1999] equation multiplied by the factor (1+0.07 N/Ac) 118
Figure (6-10) Relation between the experimental and predicted results from
Farahat [2003] equation multiplied by the factor (1+0.07 N/Ac) 119
Figure (6-11) Relation between the experimental and predicted results from
Shaaban [2004] equation multiplied by the factor (1+0.07 N/Ac) 119

Figure (6-12)	Relation between the experimental and predicted results from	
	modified ECP [2007] equation multiplied by the ACI factor	23
Figure (6-13)	Relation between the experimental and predicted results from	
	Sharma [1986] equation multiplied by the ACI factor	23
Figure (6-14)	Relation between the experimental and predicted results from Narayanan and Darwish [1987] equation multiplied by the	
	ACI factor	24
Figure (6-15)	Relation between the experimental and predicted results from	
	Ashour [1992] equation multiplied by the ACI factor	24
Figure (6-16)	Relation between the experimental and predicted results from	
	Shin [1994] equation multiplied by the ACI factor	25
Figure (6-17)	Relation between the experimental and predicted results from	
	Oh etal [1998] equation multiplied by the ACI factor	25
Figure (6-18)	Relation between the experimental and predicted results	
	from Madhusudan [1999] equation multiplied by the ACI factor 13	26
Figure (6-19)	Relation between the experimental and predicted results from	
	Farahat [2003] equation multiplied by the ACI factor	26
Figure (6-20)	Relation between the experimental and predicted results from	
	Shaaban [2004] equation multiplied by the ACI factor	27

LIST OF TABLES

Table (2-1) Code recommendations for effective width for symmetric T-beams 46
Table (3-1) Mix Constituents Proportions for concrete used
Table (3-2) Experimental program for the studied beams including the
mean compressive strength
Table (4-1) Factors and group number
Table (4-2) Properties of tested beams
Table (4-3) The cracking and the ultimate deflection of all the tested beams $\dots 68$
Table (5-1) Cracking Load, Ultimate Load and Failure Mode of the tested beams 83
Table (5-2) Stiffness of the tested beams at different loading stages
Table (6-1) Equations to predict the shear strength and the factors taken
into consideration for each equation
Table (6-2) Properties of all the beams including the beams studied by
Shaaban [2004]
Table (6-3) Comparison between the equations in literature modified to count
for axial loading, in predicting shear strength
Table (6-4) Values of the Experimental and Predicted shear strength using
modified ECP [2007] equation
Table (6-5) Values of the Experimental and Predicted shear strength using
the equations in literature multiplied by the ECP factor
Table (6-6) Ratio between Experimental and Predicted shear strength using
codes and equations listed in Literature multiplied by ECP factor 114
Table (6-7) Values of the Experimental and Predicted shear strength using
the equations in literature multiplied by the ACI factor
Table (6-8) Ratio between Experimental and Predicted shear strength using
codes and equations listed in Literature multiplied by ACI factor 122

Chapter 1

INTRODUCTION