Effect of myopia on optical coherence tomography parameters

THESIS

<u>Submitted for partial fulfillment of the requirement in MS. Degree of</u> ophthalmology

By:

Nesma Saied Khames Allam

Ain Shams University, MB, B ch.

Under supervision of:

Professor Doctor: Mohamed Adel Abdel Shafik

Professor of Ophthalmology, Ain Shams University, faculty of medicine

Professor Doctor: Amr Saleh Galal Mousa

Professor of

Doctor: Momen Mahmoud Hamdi

Lecturer of Ophthalmology, Ain Shams University, faculty of medicine

Ain Shams University

Cairo

2017

Acknowledgments

I wish to express my sincere gratitude to Professor Doctor: Mohamed Adel Abdel Shafik for being very kind and helpful. His wisdom knowledge, and commitment to the highest standards inspired and motivated me .without his insight, support, and energy, this project wouldn't have started.

I sincerely thank Professor Doctor: Amr Saleh Galal and Doctor: Momen Mahmoud Hamdi for their guidance and encouragement in carrying out the research.

I must express my very profound gratitude to my family and my husband for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them.

Contents:

•	List of abbreviations	<i>î</i>
•	List of figures	-iii
•	List of tables	-vi
•	Introduction	1
	Introduction	1
	Aim of the work	4
•	Review	5
	Chapter 1 myopia and glaucoma	5
	Chapter 2 Optical Coherence Tomography	-13
•	Subjects &Methods	34
	Subjects &Methods	34
	Statistics	39
•	Results	41
•	Discussion	61
•	Summary	68
	References	71

List of abbreviations:

AL----axial length

CpRNFL----- circumpapillary retinal nerve fiber

SE----spherical equivalent

FLV ----- focal loss volume

GCC -----ganglion cell complex

GLV----- global loss volume

GON-----glucomatous optic neuropathy

IOP----intraocular pressure

CNV-----choroidal neovasular membrane

POAG-----primary open angle glaucoma

OCT----- optical coherence tomography/gram

ONH----- optic nerve head

PPA----peri papillary chorioretinal atrophy

PVD----post vitreous detachment

RD----retinal detachment

RGC_s....retinal ganglion cells

pRNFL----- peripapillary retinal nerve fibre layer

RPE----retinal pigment epithelium

RE----- refractive error

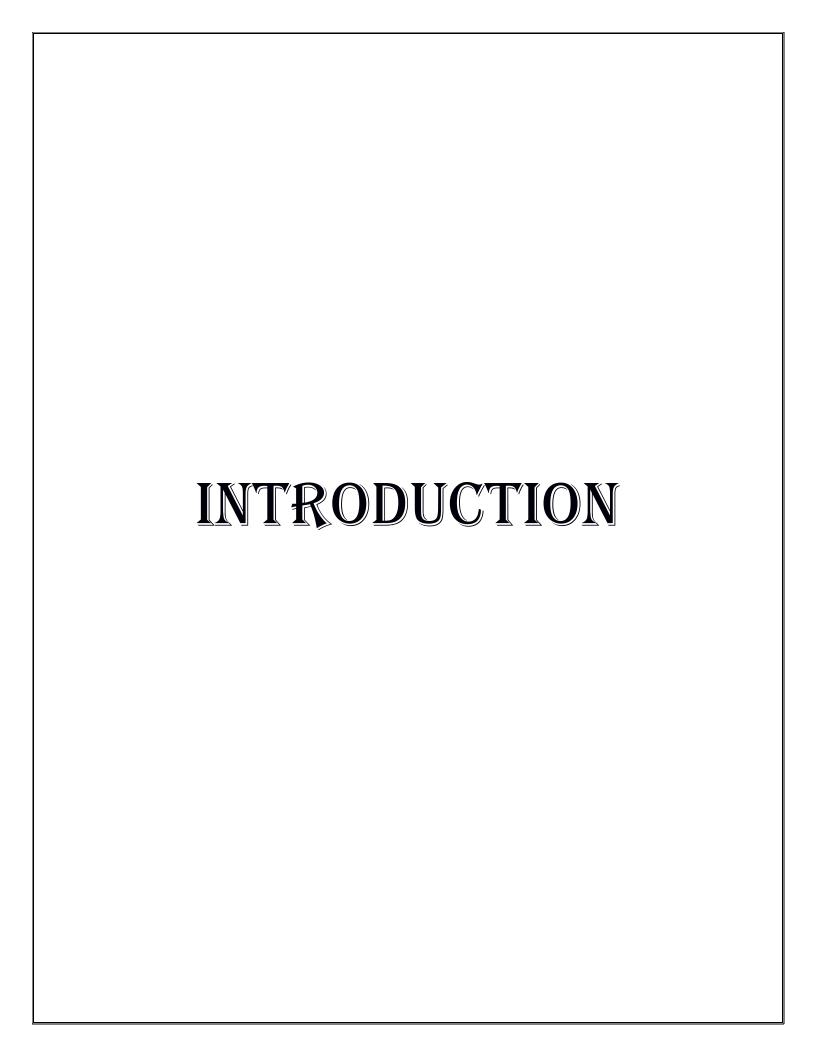
TSNIT-----temporal-superior-nasal-inferior-temporal

SAP----- standard automated perimetry

VF----- visual field

List of figures:

Figure1: Variable deformation of the optic disc and	
peripapillary appearance in highly myopic eyes	11
Figure 2: Typical myopic disc with tilting on fundus	
photograph	-12
Figure 3: a typical myopic macrodisc	12
Figure4: The Principle of OCT	16
Figure 5: Line scan of normal retinal architecture	17
Figure 6: RNFL 3.45 scan diameter	-18
Figure 7: ONH analysis map	-19
Figure 8: Retinal nerve fiber layer (RNFL) thickness pro	file
in a highly myopic eye	-24


<u>Figure 9</u> : Retinal nerve fiber layer (RNFL) thickness profile
of two eyes with high myopia25
Figure 10: The RNFL analysis27
Figure 11: TSNIT analysis of OD and OS29
Figure 12: optic nerve head and ganglion cell complex
analysis of both eye33
Figure 13 : RTVue38
Figure 14: example of an abnormal color coding in
superior pRNFL.in the right eye43
<u>Figure 15</u> : example of an abnormal color coding in inferior pRNFL
and Average pRNFL.in both eyes44
Figure 16: example of bilateral abnormal color coding in average
pRNFL and average inferior thickness44
Figure 17: Example of bilateral a normal color coding in
pRNFL (patient number 7 in emmetropic group)45

<u>Figure 18:</u> Example of an abnormal color coding in superior
pRNFL in both eyes (patient number 7 in myopic group)46
<u>Figure 19:</u> Example of an abnormal color coding in superior pRNFL
in both eyes (patient number 12 in myopic group)47
Figure 20: Example of an abnormal color coding inferior pRNFL in
right eye (patient number 4 in myopic group) 48
Figure 21: Example of a normal color coding pRNFL in left eye
(patient number 6 in myopic group)49
Figure 22: Example of a normal color coding pRNFL in the right eye
(patient number 9 in myopic group)50
Figure 23 : Example of abnormal color coding affecting both eyes
Average GCC, superior GCC, inferior GCC and GLV52
<u>Figure 24</u> : Example of bilateral a normal color coding in GCC
parameters (patient number 7 in emmetropic group)53
Figure 25: correlations between axial length & optic disc area-58

List of tables:

<u>Table 1</u> : participant characteristics regarding axial
length, error and vertical C/D Ratio42
<u>Table 2</u> : prevalence of abnormal color coding in pRNFL
among different group51
<u>Table 3</u> : prevalence of abnormal color coding in GCC
(superior, inferior, average)54
<u>Table 4</u> : Prevalence of abnormal color coding in different
groups in global GCC and focal GCC 55
<u>Table 5</u> : Agreement between GCC and RNFL among
myopic56
<u>Table 6:</u> RNFL and GCC thickness measurements obtained
using RTVue57
<u>Table 7:</u> Correlation between degree of myopia and occurrence of
abnormal RNFL or GCC59

to the axial length	 60

Introduction

Glaucoma is a progressive optic neuropathy that damages retinal ganglion cells and their axons. The progressive loss of retinal ganglion cells axons results in thinning of the retinal nerve fiber layers (RNFL).¹

Optical coherence tomography (OCT) was developed to obtain in vivo measurements and thus can be used to determine the peripapillary RNFL. The RNFL thickness of circular path around the disc is measured using OCT, and the results can be compared with the normative group database. ²

Although individual RNFL profiles are highly reproducible when scans are repeated and RNFL profile from the two eyes of an individual are very similar, a variety of factors influence the amplitude and waveform components of the RNFL profile. The overall amplitude decreases with age, poor signal strength, but increases with disc size. The

RNFL profile shape is affected by refractive errors. Tilted disc syndromes can also affect the RNFL profile.¹

The risk of glaucoma in myopic eyes is higher than in non-myopic ones. However, myopic disc structure may vary widely making images difficult to interpret; myopic discs may mask early glaucomatous damage.³

Recently, optical coherence tomography (OCT) has enabled automatic measurements of macular ganglion cell complex (GCC) thickness. This includes the thickness of the retinal nerve fibre, ganglion cell and inner plexiform layers.³

Previous researches have focused on measurements of the optic disc and peripapillary RNFL. However, conditions like circumpapillary atrophy and optic disc tilt, which are quite common in highly myopic eyes (refractive error over -6), greatly reduce the clinical value of these measurements. Based on this idea, Zeimer et al in 1998 proposed to measure macular thickness as an indicator for

monitoring glaucoma. ⁶ Subsequently, Ishikawa et al in 2005 and Tan et al in 2008 developed corresponding OCT based measurement software and found that the influence of glaucoma on the retina was limited to the inner layer. ^{7,8} Among other instruments The recent development of RTVue, (Software version 6.1, model RT 100; Optovue, Fremont, California, USA) has allowed definition and measurement of the thickness of the ganglion cell complex (GCC), and studies have confirmed that the GCC has the same diagnostic capability as the RNFL in the diagnosis of glaucoma.⁴

A modern OCT system provides a high frame-transfer rate and fast Fourier transform algorithm, and can perform up to 26,000 A-scans per second, with a depth resolution of approximately 5 μ m.⁵

Waveforms may very owing to measurement errors. Therefore, healthy eyes not affected by ocular diseases may generate abnormal color codes in OCT maps.¹

Aim of the work

The aim of this work is to evaluate the changes in OCT of myopic eyes. Through quantitative topographical measurements and abnormal color coding of pRNFL, GCC and ONH.