CONTROL OF SOIL POLLUTION AND FORAGE PRODUCTION OF PHALARIS SP. BY USING NATURAL FERTILIZATION RESOURCES

BY NAGI HUSSIEN MAHMOUD BAUMI

B.Sc. Agric. (Agronomy), Ain Shams University, 1988
Diploma in Environmental Sciences. Department of
Agricultural Science. Institute of Environmental Studies
and Research. Ain Shams University, 1993

A Thesis Submitted in Partial Fulfillment of The Requirement for the Master Degree in Environmental Science

Department of Agricultural Science Institute of Environmental Studies & Research Ain Shams University

1999

APPROVAL SHEET

CONTROL OF SOIL POLLUTION AND FORAGE PRODUCTION OF *PHALARIS SP*. BY USING NATURAL FERTILIZATION RESOURCES

BY NAGI HUSSIEN MAHMOUD BAUMI

B.Sc. Agric. (Agronomy), Ain Shams University, 1988 Diploma in Environmental Sciences. Department of Agricultural Science. Institute of Environmental Studies and Research. Ain Shams University, 1993

This Thesis for Master Degree in Environmental Science has been approved by:

Name	Signature
1. Prof. Dr. Nabil Nasr El-H	Hefnawy
Professor of Agronomy, H	
Environment and Bio-Agr	iculture Department
Faculty of Agriculture, El-	-Azhar University
2. Prof. Dr. Abd El-Azeim	Mohamed El-Hammady
Professor of Horticulture,	Dean of the
Institute of Environmental	Studies and
Research, Ain Shams Univ	versity
3. Prof. Dr. Tawakul Youni	s Rizk
Prof. of Agronomy	
Faculty of Agriculture, Air	n Shame University
racuity of Agriculture, Ar	ii Silailis Olliveisity
Date: / / 1999	Committe in charge

CONTROL OF SOIL POLLUTION AND FORAGE PRODUCTION OF PHALARIS SP. BY USING NATURAL FERTILIZATION RESOURCES

BY

NAGI HUSSIEN MAHMOUD BAUMI

B.Sc. Agric.(Agronomy), Ain Shams University, 1988 Diploma in Environmental Sciences. Department of Agricultural Science. Institute of Environmental Studies and Research. Ain Shams University, 1993

A Thesis Submitted in Partial Fulfillment
of
The Requirement for the Master Degree
in
Environmental Science
Department of Agricultural Science

Under the supervision of:

1. Prof. Dr. Tawakul Younis Rizk

Agronomy Department Faculty of Agriculture. Ain Shams University

2. Dr. Hesham Ibrahim El-Kassas

Associate Prof. Agricultural Science Department. Institute of Environmental Studies and Research Ain Shams University.

3. Dr. Zienab Mahmoud Nassar

Associate Prof. Plant Ecology and Range Management Department, Desert Research Center.

ABSTRACT

Nagi Hussein Mahmoud Baumi, Control of soil pollution and forage production of *Phalaris* sp. by using natural fertilization resources. M.Sc. Thesis, Institute of Environmental Studies and Research, Agriculture Science Department, Ain Shams University, 1999.

Two field experiments were set up at Mariut Research Station, Desert Research Center, during 1994/95 and 1995/96 growing seasons to study the effect of two levels of biofertilizer (without inoculation and with inoculation with Azotobacter), four levels of organic manure i.e. 0.0, 20, 40 and 60 m³/fed and three rates of nitrogen fertilizer viz., 0.0, 40 and 80 kg N/fed. The split plot design with four replications was applied where the main plots were devoted to biofertilizer treatments, while the sub-plots were occupied by the combination of farmyard manure and nitrogen fertilizer. The results showed that inoculation reedcanary grass with Azotobacter enhanced vegetative growth parameters, forage yield as well as seed yield and some, chemical components and reduced most of heavy metals concentration in both soil and plant tissues. It was also noticed that increasing organic manure or nitrogen fertilizer rates increased all growth parameters and this reflect in more forage or seed quantity and quality of reedcanary grass under calcareous soil conditions of Mariut district. Moreover, heavy metals concentrations due to the application of organic manure or nitrogen fertilizer were increased in soil or plant tissues but its concentrations still at the safe limits.

ACKNOWLEDGMENT

The author wishes to express his sincere appreciation and gratitude to his major **Professor Dr. Tawakul Y. Rizk,** Professor of Agronomy, Faculty of Agriculture, Ain Shams University for his supervision and valuable help and advice during the course of this work as well as the preparation of the manuscript.

Sincere appreciation and thanks to **Dr. Hesham Ibrahim El-Kassas**, Associate Prof. Agricultural Science Department Institute of Environmental Studies and Research, Ain Shams University for supervision and sincere advise through this work.

Grateful thanks are extended to **Dr. Zienab, M. Nassar**, Associate Prof., Head of Range Management Unit, Desert Research Center for supervision, encouragement and help throughout the course of this investigation.

Thanks are also extended to **Dr. Mohamed Shukry Reiad**, Professor of Agronomy, Ain-Shams
University for his sincere encouragement before leaving to
Saudia Arabia in 1995. Thanks also extended to **Dr.Mervat.A.Amara,**Associate prof.,Soil Microbiology
Unit, Desert Research Center, for making Azotobacter inoculation available.

CONTENTS

INTRODUCTION	Page 1
REVIEW OF LITERATURE	3
I. EFFECT OF BIOFERTILIZER	3
1. On growth parameters	3
2. On yield and yield components	5
3. On chemical composition	9
4. On soil and plant pollution	10
II. EFFECT OF ORGANIC MANURE	11
1. On growth parameters	11
2. On yield and yield components	13
3. On chemical composition	18
4. On soil and plant pollution	19
III. EFFECT OF NITROGEN FERTILIZERS	22
1. On growth parameters	22
2. On yield and yield components	24
3. On chemical composition	30
4. On soil and plant pollution	33
MATERIALS AND METHODS	37
RESULTS AND DISCUSSION	44
I- EFFECT OF BIOFERTILIZER	44
1. On some growth parameters	44
1.1. Plant height	44
1.2. Number of tillers/unit area	44
1.3. Number of leaves/main stem	44
1.4. Leaf area/plant	46

1.5. Leaf/stem ratio	46
1.6. Specific leaf weight (SLW)	47
2. On forage yield	47
2.1. Leaves fresh, dry and accumulated	
yeilds	47
2.2. Stems fresh, dry and accumulated	
yields	47
2.3. Total fresh, dry and accumulated	
forage yeilds	47
3. On grain yield and its components	50
4. On chemical components	52
4.1. Crude protein	52
4.2. Total carbohydrates	54
4.3. Crude fiber percentage	54
4.4. Ash percentage	54
4.5. Ether extract percentage	54
5. On soil and plant pollution	60
5.1. On soil pollution	60
5.2. On plant pollution	60
II. EFFECT OF ORGANIC MANURE	64
1. On growth parameters	64
1.1 Plant height	64
1.2. Number of tillers/unit area	64
1.3. Number of leaves/main stem	66
1.4. Leaf area/plant	66
1.5. Leaf/stem ratio	67
1.6. Specific leaf weight (SLW)	67
2. On forage yield	67
2.1. Leaves fresh, dry and accumulated	
yeilds	68

	2.2. Stems fresh, dry and accumulated	
	yields	71
	2.3. Total fresh, dry and accumulated	
	forage yeilds	71
	3. On grain yield and its components	73
	4. On chemical components	75
	4.1. Crude protein	76
	4.2. Total carbohydrates	78
	4.3. Crude fiber percentage	81
	4.4. Ash percentage	81
	4.5. Ether extract percentage	84
	5. On soil and plant pollution	86
	5.1. On soil pollution	86
	5.2. On plant pollution	86
III.	EFFECT OF NITROGEN FERTILIZATION	90
	1. On some growth parameters	90
	1.1. Plant height	90
	1.2. Number of tillers/unit area	90
	1.3. Number of leaves/main stem	92
	1.4. Leaf area/plant	92
	1.5 Leaf/stem ratio	93
	1.6. Specific leaf weight (SLW)	93
	2. On forage yield.	93
	2.1. Leaves fresh, dry and accumulated	
	yeilds	93
	2.2. Stems fresh, dry and accumulated	
	yields	94
	2.3. Total fresh, dry and accumulated	
	forage yeilds	97

3. On grain yield and its components	97
4. On chemical components	99
4.1. Crude protein	99
4.2. Total carbohydrates (Tc)	102
4.3. Crude fiber percentage	102
4.4. Ash percentage	102
4.5. Ether extract percentage	108
5. On soil and plant pollution	108
5.1. On soil pollution	108
5.2. On plant pollution	111
IV. EFFECT OF INTERACTION	114
1. Effect of the interaction between bio-	
fertilizer and organic manure	114
1.1. On growth parameters	114
1.2. On chemical components	114
1.2.1. Crude protein percentage	114
1.2.2. Crude fiber percentage	117
1.2.3. Ash percentage	117
1.2.4. Ether extract	117
1.3. On soil and plant pollution	117
1.3.1. On soil pollution	117
1.3.2. On plant pollution	119
2. Effect of the interaction between bio and	
nitrogen fertilizers	121
2.1. On growth parameters	121
2.1.1. Leaf area/plant	121
2.1.2. Leaf/stem ratio	121
2.2. On forage yield	123
2.1.1. Leaves fresh forage yield	123
2.2.2. Stems fresh forage yield	123

	2.2.3. Total fresh forage yield	123
	2.2.4. Accumulated leaves, stems fresh	
	forage yield	123
	2.3. On grain yield and its components	125
	2.4. On chemical composition	125
	2.5. On plant pollution	125
3.	Effect of the interaction between organic	
	manure and nitrogen fertilizers	130
	3.1. On growth parameters	130
	3.1.1. Plant height	132
	3.1.2. Leaf area/plant	132
	3.2. On forage yield	132
	3.2.1. Stems fresh forage yield	132
	3.2.2. Total fresh forage yield	134
	3.2.3. Accumulated fresh forage yield	134
	3.3. grain yield components	134
	3.4. On chemical composition	137
	3.5. On soil and plant pollution	137
	3.5.1. On soil pollution	137
	3.5.2. On plant pollution	140
4.	Effect of the intraction among bio, organic	
	and nitrogen fertilizers	140
	4.1. On growth parameters	140
	4.1.1. Plant height	143
	4.1.2. Leaf area/plant	143
	4.2. On forage yield	143
	4.2.1. Accumulated stems fresh forage	
	yield	143
	4.3. On grain yield and its components	143
	4.4. On chemical composition	146

4.5. On soil and plant pollution	
4.5.1. On soil pollution	146
4.5.2. On plant pollution	
SUMMARY AND CONCLUSION	151
SUMMARY AND CONCLUSION REFERENCES	151 161

LIST OF TABLES

Table	Title	Page
No.		
1	Mechanical, chemical and heavy metals analysis of the experimental soil site before sowing in 1994 growing seaso n.	38
2	Mechanical and chemical analysis of the experimental soil site after sowing in 1996 growing season.	38
3	Chemical properties and heavy metals of applied sheep dung manure before sowing in 1994 growing season and heavy metals in ammonium sulfate	39
4	Effect of biofertilizer on some growth parametrs of reedcanary grass during 1994/95 and 1995/96 growing seasons.	45
5.	Effect of biofertilizer on fresh, dry and total yield components of reedcanary grass during 1994/95 and 1995/96 growing seasons.	48
6.	Effect of biofertilizer on accumulated yield of reedcanary grass during 1994/95 and 1995/96 growing seasons.	49
7.	Effect of biofertilizer on grain yield and its components of reedcanary grass during 1994/95 and 1995/96 growing seasons.	51
8.	Effect of biofertilizer on crude protein percentage of reedcanary grass in leaves, stems and grains during 1994/95 and 1995/96 growing seasons.	53
9.	Effect of biofertilizer on total carbohydrates	55

percentage of reedcanary grass in leaves, stems and grains during 1994/95 and 1995/96 growing seasons. 10 Effect of biofertilizer on accumulated protein and 56 carbohydrates yield in leaves, stems and grains of reedcanary grass during 1994/95 and 1995/96 growing seasons. 11. Effect of biofertilizer on crude fiber percentage 57 of reedcanary grass in leaves, stems and grains during 1994/95 and 1995/96 growing seasons. 12. Effect of biofertilizer on ash percentage of 58 reedcanary grass in leaves, stems and grains during 1994/95 and 1995/96 growing seasons. Effect of biofertilizer on ether extract percentage 13 59 of reedcanary grass in leaves, stems and grains during 1994/95 and 1995/96 growing seasons. 14 Effect of biofertilizer on Pb, Zn, Mn, Cu (p.p.m) 61 concentration of soil during 1995/96 growing season. 15 Effect of biofertilizer on Pb, Zn, Mn, Cu (p.p.m) 62 concentration of reedcanary grass during 1995/96 growing season. 16. Effect of organic manure on some growth 65 parameters of reedcanary grass during 1994/95 and 1995/96 growing seasons. Effect of organic manure on fresh, dry and total 17. 69 yield components of reedcanary grass during 1994/1995 and 1995/96 growing seasons. Effect of organic manure on accumulated yield 70 18.

of reedcanary grass during 1994/95 and 1995/96

- growing seasons.
- 19. Effect of organic manure on grains yield and its components of reedcanary grass during 1994/95 and 1995/96 growing seasons.
- 20. Effect of organic manure on crude protein 77 percentage of reedcanary grass in leaves, stems and grains during 1994/95 and 1995/96 growing seasons.
- 21. Effect of organic manure on total carbohydrates 79 percentage of reedcanary grass in leaves, stems and grains during 1994/95 and 1995/1996 growing seasons.
- 22 Effect of organic manure on accumulated protein 80 and carboydrates yields in leaves, stems and grains of reedcanary grass during 1994/95 and 1995/96 growing seasons.
- 23. Effect of organic manure on crude fiber 82 percentage of reedcanary grass in leaves, stems and grains during 1994/1995 and 1995/96 growing seasons.
- 24 Effect of organic manure on ash percentage of 83 reedcanary grass in leaves, stems and grains during 1994/95 and 1995/96 growing seasons.
- 25 Effect of organic manure on ether extract 85 percentage of reedcanary grass in leaves, stems and grains during 1994/1995 and 1995/96 growing seasons.
- 26. Effect of organic manure on Pb, Zn, Mn and Cu 87 (p.p.m) concentration of soil during 1995/1996 growing season.
- 27 Effect of organic manure on Pb, Zn, Mn and Cu 88

(p.p.m) concentration of reedcanary grass during 1995/1996 growing season. 28 Effect of nitrogen fertilizer on some growth 91 parameters of reedcanary grass during 1994/1995 and 1995/1996 growing seasons. 29 Effect of nitrogen fertilizer on fresh, dry and total 95 yield of reedcanary grass during 1994/1995 and 1995/1996 growing seasons. 30. Effect of nitrogen fertilizer on accumulated yield 96 of reedcanary grass during 1994/1995 and 1995/1996 growing seasons. 31. Effect of nitrogen fertilizer on grains yield and 98 yield components of reedcanary grass during 1994/1995 and 1995/1996 growing seasons. 32. Effect of nitrogen fertilizer on crude protein 100 percentage of reedcanary grass in leaves, stems and grains during 1994/1995 and 1995/1996 growing seasons. 33 Effect of nitrogen fertilizer 103 on total carbohydrates percentage of reedcanary grass in leaves, stems and grains during 1994/1995 and 1995/1996 growing seasons. Effect of nitrogen fertilizer on accumulated 34 104 protein and carbohydrate yields in leaves, stems and grains of reedcanary grass during 1994/1995 and 1995/1996 growing seasons. 35 Effect of nitrogen fertilizer on crude fiber 106 percentage of reedcanary grass in leaves, stems and grains during 1994/1995 and 1995/1996 growing seasons.

Effect of nitrogen fertilizer on ash percentage of

107

36