THE USEFULNESS OF QUANTITATIVE ASSESMENT OF WILMS' TUMOR GENE 1 (WT1) EXPRESSION BY REAL-TIME PCR DURING MINIMAL RESIDUAL DISEASE MONITORING OF ACUTE MYELOID LEUKEMIA

Thesis

Submitted for Partial Fulfillment of MD degree in Clinical & Chemical Pathology

Presented by

Mai Mohammed Mohammed Abo Mosa (M.B.B.Ch. M. Sc. Clinical Pathology) Cairo University

Supervised by

Prof. Dr. Hala Mohammed Farawila

Professor of Clinical & Chemical Pathology
Faculty of Medicine
Cairo University

Prof. Dr. Mona Salah EL-Din Hamdy

Professor of Clinical & Chemical Pathology
Faculty of Medicine
Cairo University

Prof. Dr. Hoda Mohammed Abd EL-Ghany

Professor of Clinical & Chemical Pathology
Faculty of Medicine
Cairo University

Prof. Dr. Alaa Mohammed EL-Haddad

Professor of Medical Oncology National Cancer Institute Cairo University

> Faculty of Medicine Cairo University 2008

ACKNOWLEDGEMENT

First and foremost thanks to God the source of all goods.

Then I would like to express my deep thanks and appreciation to **Prof. Dr. Hala Mohammed Farawila** Professor of Clinical and Chemical Pathology, Faculty of medicine, Cairo University, for giving me a lot of her precious time and support and for her constructive guidance and valuable observations. Thanks to her for every thing.

I would like to express special thanks and gratitude to **Prof. Dr Alaa Mohammed EL-Haddad,** Professor of medical oncology,
National Cancer Institute, Cairo University for his kind supervision, continuous encouragement and valuable observations throughout this work.

My sincere appreciation to **Prof. Dr. Mona Salah EL-Din Hamdy,** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for her help, guidance, precious advice meticulous revision, valuable observations offered to me throughout this work.

My sincere appreciation also to **Prof. Dr. Hoda Mohamed Abd El-Ghany**, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for her help, guidance, precious advice meticulous revision, valuable observations offered to me throughout this work.

I would like to express special thanks also to Assistant Prof. Or. Nehal Salah El-Din Ibrahim, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for her help, guidance, precious advice meticulous revision, and valuable observations offered to me throughout this work.

Key words

WT1, AML, MRD

ABSTRACT

WT1 is a reliable marker for minimal residual disease assessment in acute leukemia patients. This study was designed to demonstrate the potential use of WT1 to establish quality of remission in acute leukemia patients for early identification of patients at high risk of relapse. This study based on a quantitative Real—Time PCR (TaqMan) assay in 86 bone marrow samples collected from 45 acute myeloid leukemia patients at diagnosis and during follow-up was established. The evaluation of WT1 in bone marrow samples after induction chemotherapy can distinguish the continuous complete remission patients from those who obtain only an "apparent" complete remission and who could relapse within a few months. WT1 helps identify patients at high risk of relapse soon after induction chemotherapy allowing post-induction therapy in high risk patients to be intensified.

Contents

	Page
• List of Tables	
• List of Figures	
• List of Abbreviations	
• Introduction and aim of work	1
• Review of Literature	
Acute Myeloid Leukemia	3
Detection of Minimal Residual Disease 1 Acute Myelogenous Leukemia	in 40
Wilms' Tumor Gene	78
• Subjects and Methods	136
• Results	155
• Discussion	190
• Summary and Conclusion	205

• Recommendations	211
• References	212
• Arabic summary	

List of Tables

	Page
Table (1): Conditions Predisposing to Development of Acute Myelogenous Leukemia	5
Table (2): The FAB classification of acute myeloid leukemia:	10
Table (3): Proposed WHO Classification of acute Myeloid leukemia:	13
Table (4): Clinical features of the subtypes of AML:	16
Table (5) Summary of bone marrow findings in acute myeloid leukemia (AMLs)	19
Table(6): Cytochemistry of acute leukemia:	21
Table(7): Correlation of histochemical characteristics and immunophenotype of acute myeloid leukemia cells:	23
Table(8) Cytogenetic risk groups in de novo AML:	26
Table (9): Prognostic factors in acute myeloid leukemia (AML):	27
Table(10): Prognostic Factors In Acute Myelogenous Leukemia	28
Table (11): Categories of novel therapies for acute myeloid leukemia (AML).	38

Table (12):- New agents directed at molecular and other specific targets in clinical trials	39
Table (13): Proposal for an algorithm at diagnosis and for follow- up studies in AML	43
Table (14): Methods for the detection of MRD in AML	44
Table (15): Leukemia-associated immunophenotypes that can be identified at diagnosis of acute leukemia and can subsequently be used to monitor minimal residual disease.	51
Table (16): Selected transcriptional targets of WT1 and its reported transcriptional effect:	85
Table (17): Expression of wild-type WT1 in various human cancers:	91
Table (18). Selected interacting partners of WT1	103
Table of Results	
Table 1: Summary of the clinical findings of the studied AML patients and their response to therapy:	167
Table 2: Summary of the laboratory findings of the studied AML patients at diagnosis:	168
Table 3: Summary of the laboratory findings of the studied AML patients at day 28:	168
Table 4: WT1 expression by Real-time PCR among AML patients:	169
Table 5: WT1gene expression in the control group:	169
Table 6: Associations between WT1 expression levels and clinical and biological variables of the studied patients at diagnosis:	170

Table 7: Correlation between WT1 gene expression levels and leukemic blast percentage in the studied patients at diagnosis	171
Table 8: Correlation between WT1 expression levels and blast percentage in the 10 studied AML patients at day 14.	175
Table 9: Correlation between WT1 expression levels and blast percentage in the studied patients at day 28.	175
Table 10: MRD detection at day 28 and outcome of the patients after 1 year:	176
Table 11: MRD detection at day 28 and outcome of the 22 patients with BM blasts less than 5 %(morphological remissions) during 1 year follow up.	177
Table 12: The sensitivity, specificity, predictive value and accuracy of MRD detection in predicting poor prognosis in all cases and in cases with BM blasts less than 5% (morphological remission):	177
Table 13: Prognostic relevance of WT1-NCN gene expression levels at day 28.	178
Table 14: The role of WT1-NCN gene expression at diagnosis in early detection of poor outcome.	178
Table 15: The role of WT1-NCNgene expression, at day 28, in early detection of relapse	179
Table 16: The role of MRD detection at day 28 in early detection of relapse.	180
Table 17: The role of WT1-NCN at day 14 in predicting mortality.	181
Table 18: The role of WT1-NCN at day 28 in predicting mortality.	182

- Table 19: The role of MRD detection at day 14 in predicting mortality. 183
- Table 20: The role of MRD detection at day 28 in predicting mortality. 183

List of Figures

	Page
Figure (1): Combination of cytochemical stains and flow cytometry of acute leukemia diagnosis	24
Figure (2): Therapeutic decisions in the treatment of AML.	32
Figure (3): Structure of WT1 (Wilms' tumor suppressor gene) and the proteins it encodes	83
Figure (4): Schematic diagram of the WT1 structure at the DNA (exons only), mRNA and protein level.	84
Figure (5): The interaction partners of WT1.	87
Figure (6): QIAamp RNA Blood Mini Procedure.	139
Figure (7): Total RNA is reverse transcribed, and the generated cDNA amplified by PCR using a pair of specific primers and a specific internal double-dye probe (FAM-TAMRA).	147
Figure (8): WT1 Standard Curve	151
Figure (9): ABL Standard Curve	152
Figure of Results	
Figure (1): Correlation between day-1 BM blasts (%) and day-1 WT-1 gene NCN among cases with AML	171

Figure (2): Normalized copy number of WT1at day 1 among 45AML cases divided according to the FAB subtypes and 6 healthy BM donors controls. Values were transformed to the natural logarithm. Means are represented by the dotted lines.	172
Figure (4): Kaplan Meier curve showing event free survival in AML patients according to WT1 expression levels at diagnosis. The curves did not differ significantly.	173
Figure (5): Correlation between day-14 BM blasts (%) and day-14 WT1-NCN among cases with AML	175
Figure (6): Correlation between day-28 BM blasts (%) and day-28 WT-1gene NCN among cases with AML	176
Figure (7): Shows ROC analysis to determine sensitivity and specificity of WT1/ABL gene expression in predicting poor outcome.	179
Figure (8): ROC analysis to determine sensitivity and specificity of WT1-NCN at day 28 in early detection of relapse.	180
Figure (9): ROC analysis to determine sensitivity and specificity of MRD detection in early detection of relapse (at day 28).	181
Figure (10): Shows ROC analysis to determine sensitivity and specificity of WT1-NCN gene expression in predicting mortality.	182
Figure (11): Shows ROC analysis to determine sensitivity and specificity of MRD detection in predicting mortality.	184
Fig. (12): Amplification plots of 10^3 , 10^4 and 10^5 copies of Control	185
Gene ABL plasmid.	

Figure (13): ABL Standard Curve	
Fig. (14): Amplification plot of 10^1 , 10^2 , 10^3 , 10^5 and 10^6 copies of WT1 plasmid.	186
Figure (15): WT1 Standard Curve.	186
Fig. (16): WT1 expression in the control sample.	187
Fig (17): WT1 expression of AML patient at diagnosis.	188
Fig (18): WT1 expression of AML patient at day28.	189

List of Abbreviations

AML	Acute myelogenous leukemia
APL	Acute promyelocytic leukemia
ATRA	All-trans-retinoic acid
BASP1	Brain acid-soluble protein 1
CBF	Core binding factor
CG	Control Gene
CML	Chronic myeloid leukemia
CMV	Cytomegalovirus
CN	copy number
CR	Complete remission
Ct	Cycle threshold
DIC	disseminated intravascular coagulopathy

DLI	Donor leukocyte infusion	
EGIL	European group for the immunological classification of leukemia (EGIL)	
EGFR	Epidermal growth factor receptor	
EGR	Early growth response	
EoL	Acute eosinophilic leukemia	
FAB	French-American-British classification	
FACS	florescence-activated cell sorter	
FISH	-fluorescence in situ hybridization	
FIST/HIPK3	-Fas-interacting serine/threonine kinase	
FLT3	-FMS-like tyrosine-3	
FLT3-ITD	-FMS-like tyrosine-3 internal tandem duplications	
FLT3-LM	FLT3-gene- length mutations	
GVL	Graft-versus-leukemia	