Trichomoniasis in Women During The Child Bearing Period

Thesis Submitted in partial fulfillment of the M.D.degree in Medical Science (Parasitology)

By Nihal Ahmed Hanafy (M.Sc.)

Assistant Lecturer of Parasitology Faculty of Medicine Cairo University

Supervised by

Prof. Dr. Omaima M. Abou Shady

Professor of Parasitology Faculty of Medicine Cairo University

Prof. Dr. Jomana Abd El-Aziz Ahmed

Professor of Parasitology Faculty of Medicine Cairo University

Ass. Prof. Dr. Mona M. Abou Elghar

Assistant Professor of Gynecology and Obstetric Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2008

بسم الله الرحمن الرحيم

"قَالُواْ سُبْحَىنَكَ لَا عِلْمَ لَنَآ إِلَّا مَا عَلَّمْتَنَآ فَالُواْ سُبْحَىنَكَ لَا عِلْمَ لَنَآ إِلَّا مَا عَلَّمْتَنَآ إِنَّكَ أَنتَ ٱلْعَلِيمُ ٱلْحَكِيمُ الْ

صدق الله العظيم

(سوره البقره)

To the soul of my father,

To my dearly beloved mother,

To my husband and kids.

ABSTRACT

In the present study (300) female patients in the child bearing period (age 20-45yrs) were selected from those attending the Obstetric and Gynecology out patient clinics as well as infertility section in Kasr El Aini hospital. Two hundred females were complaining of vaginal discharge, itching or both. One hundred were asymptomatic (control group). The females were divided into four groups, Group I included 40 pregnant females, Group II included 76 infertile females, Group III included 84 females using different contraceptive methods, Group IV included 100 asymptomatic females. Vaginal swabs were obtained form all female patients for examination by Direct wet mount examination, Giemsa staining method and InPouch TV culture to detect the presence of Trichomonas vaginalis infection in these studied groups. OSOM test was done to randomly selected 100 female patients only. The overall prevalence of infection was (36%). The prevalence of infection in each group was recorded to be 20%, 26%, 52% and 6% in the four groups respectively as detected by all tests done collectively. The InPouch culture was found to have the highest sensitivity and specificity (100%), followed by the OSOM test (87.5%) Wet mount had sensitivity of (56%), while Giemsa stain the least sensitive (49%). was

KEY WORDS:

Trichomonas vaginalis - Child bearing period - STD

ACKNOWLEDGEMENT

Thanks to "ALLAH" for enlightening my path and strengthening my will until I was able to produce this work.

I wish to express my deepest gratitude and appreciation to Prof. Dr. Hoda Helmy, Head of Parasitology Department, Cairo University, for her continious encouragement and valuable advice.

I am deeply grateful to Prof. Dr. Olfat El-Matarawy, Professor of Parasitology, Faculty of Medicine, Cairo University for her unlimited help and constant support.

I would like to express my deepest thanks and everlasting gratitude to Prof. Dr. Omaima Abou Shady, Professor of Parasitology, Faculty of Medicine, Cairo University for her constructive advice. I am truly obliged for her kindness, maternal compassion, constant support and guidance.

I would like to convey my profoud gratitude to Prof. Dr. Jomana Abd El-Aziz Professor of Parasitology, Faculty of Medicine, Cairo University, for her instructive guidance, sincere help, valuable suggestions and endless encouragement throughout this work.

I would like to thank Ass. Prof. Dr. Mona Abou Elghar, Assistant Professor of Gynecology and Obstetric, Faculty of Medicine, Cairo University, for giving me the opportunity to carry out the practical work in this study, and for cooperation and generous attitude.

I would also like to extend my thanks to the staff members and colleagues of Parasitology Department, Cairo University, who encouraged me during the preparation of this work.

I owe a lot to my great mother, for her constant help and continuous encouragement and support to finish this work. Words will be difficult to give her the full gratitude.

Lastly, I thank my husband and my kids Nadine and Rawan for their encouragement and support during preparation of this work.

LIST OF ABBREVIATIONS

CDF	Cell detatching factor
CD16	Cell membrane molecule
CDC	Centers for Disease Control
C.trachomatis	Chlamydia trachomatis
C3b	Complement component
СР	Cystien proteinase
DNA	Deoxyribonucleic acid
DFA	Direct immunoflurescent
ECM	Extracellular matrix
HIV	Human immunodeficiency virus
HIV-I	Human immunodeficiency virus type I
HVECs	Human vaginal epithelial cells
IUCD	Intra uterine contraceptive device
IUD	Intra uterine device
KDa	Kilo dalton
MMP	Mitochondrial membrane potential
MCA	Modified Colombia agar
N.gonorrhoeae	Neisseria gonorrhoeae
N	Number
PEM	Plastic envelope method
PCR	Polymerase Chain Reaction
PVP	Predictive value of positive
PVN	Predictive value of negative
+ve	Positive
-ve	Negative
ROS	Reactive oxygen species

STD	Sexually transmitted disease
STI	Sexually transmitted infections
STS	Type of media for trichomonas
TV	Trichomonas vaginalis
T.vaginalis	Trichomonas vaginalis
USA	United States Of America
μl	Microliter
VECs	Vaginal epithelial cells
WHO	World Health Organization
yrs	years

LIST OF FIGURES

Figure	Title	Page
Figure (1)	Trichomonas vaginalis trophozoite	6
Figure (2)	Trichomonas vaginalis parasites adhering to vaginal epithelial cells	7
Figure (3)	Strawberry cervix due to <i>T.vaginalis</i>	20
Figure (4)	Two trophozoites of Trichomonas vaginalis from in vitro culture	26
Figure (5)	Pap test, Papanicolau stainInfestation by <u>Trichomonas</u> <u>vaginalis</u> 400x	30
Firure (6)	Giemsa staining Typical pear-shaped <i>T. vaginalis</i> trophozoites with dark nucleus on the front end. (x1000)	30
Firure (7)	Acridine orange fluorescent staining Brick red <i>T. vaginalis</i> trophozoites with a yellowish-green banana-shaped nucleus (arrow), epithelial cells and leucocytes fluoresce light-green	31
Figure (8)	T.vaginalis Gram stain	31
Figure(9)	InPouch TM TV, <i>Trichomonas vaginalis</i> (BioMed Diagnostics, Santa Clara, Calif.),	56
Figure (10)	Inoculation of the InPouch	60
Figure (11)	Hands-free method of taking a specimen using the InPouch TV.	60
Figure (12)	Closure of InPouch	61
Figure (13)	InPouch TV culture chambers	64
Figure (14)	InPouch showing the viewing frame positioned across the lower chamber.	65
Figure (15)	InPouch showing the viewing frame positioned across the lower chamber. Viewing frame enclosing a mass of trichomonads and epithelial cell debris in the bottom portion of the lower chamber	65
Figure (16)	OSOM Trichomonas Rapid Test	66

Figure (17)	Sample Buffer added to test tube, specimen swab put into the tube	69
Figure (18)	Swab was squeezed out as much as possible by pinching the side of the flexible test tube	70
Figure (19)	OSOM test stick placed into the sample buffer solution	70
Figure (20)	Positive OSOM test strip	71
Figure (21)	Negative OSOM test strip	72
Figure (22)	Invalid OSOM test strip	72
Figure (23)	Prevalence of <i>T.vaginalis</i> infection in all studied groups	79
Figure (24)	Relation between positivity of <i>T.vaginalis</i> infection and method of contraception used in group III	80
Figure (25)	Relation between positivity of <i>T.vaginalis</i> infection by wet mount examintion and age groups.	82
Figure (26)	Relation between positivity of <i>T.vaginalis</i> infection by Giemsa stain and age groups	82
Figure (27)	Relation between positivity of <i>T.vaginalis</i> infection by InPouch culture and age groups	83
Figure (28)	Relation between positivity of <i>T.vaginalis</i> infection by OSOM test and age groups	84
Figure (29)	Wet mount examination showing <i>T.vaginalis</i> unstained trophozoite (X40)	91
Figure (30)	T.vaginalis Giemsa stain (X40)	93
Figure (31)	TV InPouch culture	95

List of Tables

Table	Title	Page
Table (1)	Signs and symptoms of <i>T.vaginalis</i> in women	21
Table (2)	Signs and symptoms of <i>T.vaginalis</i> in men	23
Table (3)	General view of the studied symptomatic and asymptomatic groups	76
Table (4)	Results of OSOM test done to randomly selected 100 female patients	77
Table(5)	Distribution of <i>Trichomonas vaginalis</i> infection among the studied groups by the different tests done collectively	78
Table (6)	Distribution of positivity of <i>Trichomonas</i> vaginalis infection among Group III (Females using contraceptive methods)	80
Table(7)	Distribution of positivity of <i>T.vaginalis</i> infection and age groups in all 300 patients	81
Table (8)	Distribution of positivity of <i>T.vaginalis</i> infection by OSOM test and age groups in 100 randomly selected female patients	83

Table (9)	Relation between age groups and positivity of infection with <i>T.vaginalis</i>	84
Table (10)	Distibution of different symptoms and positivity of <i>T.vaginalis</i> infection in symptomatic group (N=200)	85
Table (11)	Relation between different symptoms and positivity of <i>T.vaginalis</i> infection by OSOM Test (N=75)	86
Table (12)	Results of investigations done for 200 symptomatic and 100 asymptomatic females	87
Table (13)	Results of different tests done for randomly selected 75 symptomatic and 25 asymptomatic females	88
Table (14)	Results of Wet mount in comparison with InPouch in all studied groups (N=300)	90
Table (15)	Results of Giemsa stain in comparison with InPouch in all studied groups (N=300)	92
Table (16)	Results of OSOM test in comparison with InPouch in randomly selected female patients (N=100)	94

TABLE OF CONTENTS

	Page No.
* Introduction	1
* Aim of work	5
* Review of literature	
- Morphology	6
- Epidemiology	10
- Pathogenesis	13
- Clinical picture	19
- Diagnosis	24
- Treatment	41
- Prevention and control	46
* Materials and methods	48
- Wet mount	52
- Giemsa stain	53
- InPouch culture	56
- OSOM test	66
- Statistical analysis	73
* Results	75
* Discussion	96
Summary	117
* Conclusion &	
Recommendations	122
* References	125
* Arabic summary	

INTRODUCTION

Sexually transmitted infections (STI) are among the most common infectious diseases worldwide. The World Health Organization estimated that over 340 million cases of curable STI occurred in 1999 alone (WHO, 2000).

The spread of (STI) continues despite various attempts at controlling the epidemics. Sexually transmitted diseases are responsible for significant morbidity and mortality world wide because of their adverse effects on reproductive health and their ability to increase the risk of sexual and vertical transmission of human immuno-deficiency virus type I (HIV-I) (Moodley and Surm, 2000).

Trichomonas vaginalis infection is estimated to be the most widely prevalent non viral sexually transmitted infection (STI) in the world. Historically, *T. vaginalis* has been viewed as a nuisance infection that is primarily associated with genitourinary symptoms. It has also been considered a biological marker for high-risk sexual behavior; thus, the detection of *T. vaginalis* would trigger an evaluation for other pathogens (Moodley et al., 2002).

While *T. vaginalis* is associated with sexual risk behavior and other STIs, it is now considered an important independent pathogen. Multiple studies have linked *T. vaginalis* infection to significant and costly adverse health outcomes, such as pelvic inflammatory disease, vaginitis, cervicitis, preterm labor, urethritis and prostatitis (Moodley et al., 2002). It can also cause ectopic pregnancy, tubal factor infertility and adverse pregnancy outcomes (Chesson et al., 2004).

T. vaginalis is cytopathic to vaginal cells, usually surviving only in the urogenital tract of humans and is associated with potentially increased risk of both transmission and acquisition of human immunodeficiency virus (HIV) (Chesson et al., 2004). In vitro, T. vaginalis disrupts the urogenital epithelia and enhances HIV replication. It also interferes with human spermatozoal motility and may produce sperm agglutination which may lead to infertility (Guenther et al., 2005).

In an estimation for the prevalence of (STDs), it was estimated that about 7.4 million new cases of *T. vaginalis* infection occurred in year 2000 in the United States, compared to 2.8 million cases of *Chlamydia trachomatis* infection and 718,000 cases of *Neisseria gonorrhoeae* infection (Weinstock et al., 2004).

The prevalence of *T. vaginalis* is likely to be underestimated because there are no guidelines for *T. vaginalis* screening of women, and clinicians often rely upon insensitive diagnostic methods. Screening for trichomonas infection has been performed using direct microscopy or culture of the organism in most settings that include *T. vaginalis* as a component of a sexually transmitted disease (STD) control program. However, many programs do not include *Trichomonas* infection screening. *Trichomonas vaginalis* is not a reportable infection tracked by the Centers for Disease Control and Prevention in the United States (Laga et al.,1993).

Recent reports of the impact of *Trichomonas* infections on the risk of HIV transmission and acquisition suggest that more aggressive trichomonas infection screening measures may be warranted. Laga et al. (1993) demonstrated a nearly twofold increase in the odds of HIV infection in