

The Role of MRI in the Assessment of Peripheral and Maxillo-Facial Soft Tissue Vascular Anomalies

Essay

Submitted for the Partial Fulfillment of Master Degree in Radiodiagnosis

By

Ayah Abdulsalam Abdulwahab Abdulsalam Mugahid M.B., B.Ch.

Under Supervision of

Prof. Dr. Dalia Zaki Zidan

Professor of Radiodiagnosis
Faculty of Medicine-Ain Shams University

Dr. Amr Mohammed Ismaeel Saadawy

Lecturer of Radiodiagnosis
Faculty of Medicine-Ain Shams University

Faculty of Medicine Ain Shams University 2015

سورة البقرة الآية: ٣٢

Acknowledgement

My great thanks and gratitude to **Allah**, for all gifts given to me, and whose help I always seek to put my feet in the right road.

I wish to express my sincere gratitude to Professor Dr. Dalia Zidan, for her encouragement and constant advice.

I owe special gratitude to Dr. Amr Saadawy, for bearing with me and for his constant encouragement and most valuable advice throughout the execution of this work.

I would like to thank my professors for their support and inspiration.

I cannot give enough credit to my mother and my father, without which I would never be here, to my sisters who make me feel safe always and to my friends who beautify my life.

Contents

Subjects	Page
List of abbreviations	II
List of Figures	IV
List of Tables	VII
• Introduction	1
Aim of the Work	4
• Chapter (1): Histological, Embryological and Anatomical Considerations	5
• Chapter (2): Pathology of Different Vascular Anomalies	32
• Chapter (3): Physical Principles of MRI	48
• Chapter (4): Role of MRI and MRI Imagin Features of Vascular Anomalies	_
Illustrative Cases	91
Summary and conclusion	103
• References	105
Arabic Summary	

List of Abbreviations

Abbreviation	Stands for
3D	Three dimensional
4D TRAK	Four dimensional time-resolved MR
	angiography with keyhole
APA	Ascending pharyngeal artery
ASL	Arterial spin labeling
AT	Anterior tibial
\mathbf{AVF}	Arteriovenous fistula
\mathbf{AVM}	Arteriovenous malformations
BCA	Braciocephalic artery
CFA	Common femoral artery
CIA	Common iliac arteries
CLVM	Capillary, lymphatic and venous malformations
CM	Capillary malformations
CT	Computed tomography
CVM	Capillary and venous malformations
EJV	External jugular vein
FAC	Facial artery
FOV	Field of view
GLUT 1	Glucose 1 transporter protein
GRE	Gradient Echo
IJV	Internal jugular vein
IPS	Inferior petrosal sinus
ISSVA	International Society for the Study of Vascular Anomalies
LCAA	Left common carotid artery

LIN Lingual artery

LM Lymphatic malformations

LSUB Left subclavian artery
LSV Long saphenous vein

MR Magnetic Resonance

NICH Non-involuting congenital haemangioma

OCC Occipital artery

PAA Posterior auricular artery

PICH Partially involuting congenital

haemangioma

PT Posterior tibial

PVP Pterygopalatine venous plexus

RICH Rapidly involuting congenital

haemangioma

SA Subclavian artery

SE Spin Echo

SFA Superficial femoral artery

SSFP Steady state free precession

SSV Short saphenous vein

STIR Short inversion recovery

SUT Superior thyroid artery

TOF Time of flight

US Ultrasound

VEGF Vascular endothelial growth factor

VM Venous malformations

List of Figures

Figure No.	Title	Page No.
Figure (1)	Structure of blood vessels	6
Figure (2)	Arterial system of the lower limb	11
Figure (3)	Venous system of the lower limbs	15
Figure (4)	Upper limb arterial system	17
Figure (5)	Major vessels of the neck	20
Figure (6)	Branches of the external carotid artery	31
Figure (7)	Venous drainage of the head and neck	28
Figure (8)	Histological view of a proliferating hemangioma with multilaminated basement membranes	39
Figure (9)	Congential hemangioma (CH), clinical appearance in a 4-year old boy	40
Figure (10)	Histological features of lymphatic malformation	44
Figure (11)	Maximum intensity projection images (MIP) from a right hand	50
Figure (12)	Post processed MRA images.	57
Figure (13)	Proliferating infantile hemangioma in a 1-year-old infant.	70
Figure (14)	Posterior cervical venous malformation	74
Figure (15)	Diffuse pure extensive VM of the upper extremity.	75
Figure (16)	Intramuscular venous malformation of the left thigh in a 13-year-old girl	76
Figure(17)	Macrocystic lymphatic malformation in a 6-month-old infant with a swollen mass in the submandibular triangle.	78

Figure(18)	Microcystic lymphatic malformation of the forearm in a 5-year-old girl.	79
Figure(19)	Capillary-venous malformation of the calf in a 32-year-old woman.	80
Figure(20)	AVM of the proximal left forearm in a 26-year-old woman.	82
Figure(21)	AVF in a 6-month-old boy with a left retroauricular pulsatile thrill	83
Figure(22)	MR imaging appearance of a venous malformation in the calf after percutaneous sclerotherapy	86
Figure(23)	MR imaging appearance of a posterior cervical venous malformation after several sessions of percutaneous sclerotherapy.	87
Figure(24)	Venous malformation in a Middle-aged woman with dysphagia and dysphonia, before and after treatment.	88
Figure(25)	AVM of the knee in a 32-year-old woman who underwent two embolization procedures and two sclerotherapy sessions	90
Figure(26)	IH, clinical appearance of multiple focal hemangiomas in a 14-month-old girl	91
Figure(27)	MRI appearance of an IH	92
Figure(28)	Lymphatic malformation, clinical appearance in a 9-year-old boy	94
Figure(29)	LM, MRI appearance	95
Figure(30)	Venous malformation (VM), sporadic type, clinical appearance, in a 7-year-old boy	96
Figure(31)	VM, MRI appearance	97
Figure(32)	Arteriovenous malformation, clinical appearance in a newborn.	99
Figure(33)	Arterio-venous malformation (AVM) of the gluteal region MRI appearance	100

Figure(34)	Completely thrombosed pelvic AVM after transcatheter embolization in a 29-year-old woman	101
Figure(35)	Recurrent AVM of the right hemipelvis in a 65-year-old woman who underwent transarterial embolization.	102

List of Tables

Table No.	<u>Title</u>	Page No.
Table 1	Comparison of Previous Terminology and New ISSVA Terminology	35
Table 2	ISSVA Classification of Vascular Tumours.	37
Table 3	Classification of vascular malformations according to flow dynamics	42
Table 4	Clinical aspects of vascular anomalies and main treatment modalities	46
Table 5	Main MRI artifacts and solutions to them	49
Table 6	Features of soft vascular anomalies that must be assessed by MRI	68

Introduction

Introduction

Vascular malformations and tumors comprise a wide, heterogeneous spectrum of lesions that involve all parts of the body and can cause significant morbidity and even mortality in both adults and children (Navarro et al., 2009).

In the past, approaching vascular anomalies has been obscured by considerable confusion due to use of an unclear nomenclature. The term hemangioma has been applied generically to vascular lesions of differing cause and clinical behavior (Hassanein et al., 2011).

terminology Occasionally, confusion about imaging guidelines continues to be responsible for improper diagnosis and subsequent treatment. Since treatment strategy depends on the type of malformation, correct diagnosis and classification of a vascular anomaly are crucial (Mulliken et al., 2003).

Typically, the diagnosis of vascular anomalies is made clinically. However, imaging is used to clarify difficult cases and aid in the planning of potential endovascular or surgical intervention. The choice of imaging modality varies based on

the clinical scenario and specific lesion; the three main noninvasive imaging modalities used are ultrasonography (US) and doppler, magnetic resonance (MR) imaging, and computed tomography (CT) (Flors et al., 2011).

Doppler US is the easiest way to assess haemodynamics of a vascular lesion and to clarify a doubtful diagnosis between a hemangioma and vascular malformation. MRI is the best technique for evaluating the extent of the lesions and their relationship to adjacent structures (*Dubois*, **2010**).

Magnetic resonance (MR) imaging in combination angiography performed with MR with intravenous administration of gadolinium-based contrast material has an important role in evaluating the extent of lesions, particularly deeper lesions, and their relationship to adjacent structures. The recently introduced three-dimensional (3D) dynamic time-resolved MR angiography technique provides valuable information about the hemodynamics of vascular lesions; thus, MR imaging also aids in diagnosis and classification in clinically uncertain cases (*Restrepo*, 2013).

Over the past two decades, various subspecialists have adopted a new classification system proposed by the

International Society for the Study of Vascular Anomalies (ISSVA), which divides vascular anomalies into 2 main categories: neoplasms and malformations (Kollipara et al., 2013).

Vascular malformations are classified into slow-flow malformations, including capillary malformations (CM), venous malformations (VM), lymphatic malformations (LM), capillary and venous malformations (CVM), capillary lymphatic and venous malformations (CLVM), and highflow malformations including arteriovenous fistula (AVF) and arteriovenous malformations (AVM) (Dubois, 2010).

Aim of the Work

