Laparoscopic Metabolic Surgeries

Essay

Submitted for Partial Fulfillment of Master Degree in General Surgery.

By Ali Mohamed Nageb

M.B.B.CH

Ain Shams University

Under supervision of Prof. Dr. Reda Saad Mohamed

Professor of General Surgery
Faculty of Medicine
Ain Shams University

Dr. Medhat Mohamed Helmy

Lecturer of General Surgery
Faculty of Medicine
Ain Shams University

Faculty of Medicine
Ain Shams University
2016

سورة التوبة الآية (١٠٥)

First and foremost, thanks to Allah to whom \P relate any success in achieving any work in my life.

I would like to express my deepest gratitude to Prof. Dr. Reda Saad Mohamed, Professor of General and Bariatric Surgery, Faculty of Medicine, Ain shams University for his continuous guidance, supervision and generous support throughout this work.

I am very thankful to Dr. Medhat Mohamed Helmy, Lecturer of General Surgery, Faculty of Medicine, Ain Shams University for his great concern, kind supervision and his outstanding help step by step and his constant encouragement and support.

I am also indebted to everyone who assisted me in this work. I am deeply grateful to My family who directed and encouraged me during the preparation of this work.

Contents

Subjects Page	
List of Abbreviations	I
List of Tables	
List of Figures	V
• Introduction	
Aim of the Work	4
• Chapter (1): Metabolic syndrome	5
Definition	
Pathophysiology	9
Role of digestive system	20
• Chapter (2): Surgical Treatment	27
Definition of bariatric surgery	27
Types of Bariatric Surgery Procedures	30
Role of surgery in diabetic control	30
Mechanism of weight loss after bariatric surgery	35
Indication of bariatric surgery	41
Effectiveness of bariatric surgery	42
Technical details of bariatric surgery	50
Complication of bariatric surgery	85
Role of metabolic surgery in non obese	94
Bariatric surgery in type I DM	97
• Conclusion	.100
• References	.102
Arabic Summary	

List of Abbreviations

AGB : Adjustable gastric band

ACCP : American college of chest physicians

BS : Bariatric surgery

BPD: Biliopancreatic diversion

BPD/DS: Biliopancreatic diversion with duodenal

switch

BIB : BioEntericsintragastric balloon

BP : Blood pressure

BMI : Body mass index

CVD : Cardiovascular Diseases

CT : Computed tomography

CHD : Congestive heart failure

CHAOS: Coronary heart disease, hypertention,

atherosclerosis, obesity and stroke

DGRY: Derivation gastrojejunal Roux-en-Y

DM : Diabetes mellitus

DJBS: Duodenojejunal bypass sleeve

EWL : Excess weight loss

GI : Gastro intestinal

GE : Gastroesophageal

GIB : Gastrointestinal bleedingGRY : Gastrojejunal Roux-en-Y

GJ : Gastro-jejunostomy

GSHS: Global School-based Student Health Survey

GLP-1 : Glucagon like peptide - 1

GIP : Glucose-dependent insulinotropic peptide

🕏 List of Abbreviations 🗷

HDL: High density lipoprotein

HDL-C: High density lipoprotein cholesterol

HTN: Hypertension

IT : Ileal transposition

IHD : Ischemic heart diseases

LAGB: Laparoscopic adjustable gastric band

LMGB: Laparoscopic mini gastric bypass

LRYGB: Laparoscopic Roux-en-Y gastric bypass

LSG: Laparoscopic sleeve gastrectomy

LDL : Low density lipoprotein

METS : Metabolic syndrome

MGB : Mini gastric bypass

MO : Morbid obesity

NCEP: National cholesterol educational program

NHLBI: National Heart, Lung and Blood Institute

NIH : National institute of health

NICE: National Institute of Health and Clinical

Excellence

NEFA: Non estritified free fatty acids

OSA Obstructive sleep apnea

PTH : Parathyroid hormone

PYY : Peptide YY

PA : Physical activity

PAI : Plasminogen activator inhibitor

POD : Post-operative day

RRYGB: Robotic Roux-en-Y gastric bypass

RYGB : Roux-en-Y gastric bypass

E List of Abbreviations &

SADI-S: Single anastomosis duodenoileal bypass with

sleeve gastrectomy

SAS : Sleep apnea syndrome

SG : Sleeve gasterctomy

IDF : The international diabetes foundation

SASI : The single anastomosis sleeve ileal bypass

TAF1: Thrombin activatable fibrinolysis inhibitor

TG : Triglycerides

US : United States

UGI: Upper gastrointestinal

VTE: Venous thromboembolism

VBG : Vertical banded gastroplasty

VLDL : Very low density lipoprotein

Vit : Vitamin

WHO: World Health Organization

List of Tables

Table	Title	Page
(1)	Diagnostic criteria and definition of metabolic	7
	syndrome.	
(2)	Criteria for bariatric surgery.	21
(3)	Changes at 10 years in the Swedish obese subjects (SOS) study.	43
(4)	Percentage of patients with resolution or improvement of major comorbidities according to obesity operation.	
(5)	Metabolic surgery outcomes in patients with a low BMI	95

List of Figures

Fig.	Title	Page
(1)	Hypothesis of diabetes resolution after RYGB.	32
(2)	Enhancing delivery of nutrients to the hindgut	35
	without excluding nutrient flow through the	
	proximal intestine (via a simple gastro-	
	jejunostomy.	
(3)	Topography of putative appetitive signals	40
	affected by obesity operations, exemplified here	
	by gastric bypass.	
(4)	Clinical presentations of metabolic syndrome in	49
	morbid obesity and its potential reversion with	
	bariatric surgical treatment.	
(5)	Restrictive and combined procedures.	53
(6)	Kuzmak adjustable gastric band (AGB).	54
(7)	Schematic representation of sleeve gastrectomy.	58
(8)	Malabsorptive procedures.	61
(9)	Scopinaro biliopancreatic diversion without	62
	duodenal switch.	
(10)	Hess and Hess biliopancreatic diversion with	63
	duodenal switch and division of the duodenum	
	(sleeve gastrectomy with duodenal switch).	
(11)	Mason and Ito gastric bypass with gastric	65
	transection and loop gastrojejunostomy.	

List of Figures (Cont.)

Fig.	Title	Page
(12)	Griffen gastric bypass with horizontal gastric	66
	stapling with Roux-en-Y gastrojejunostomy.	
(13)	Fobi gastric bypass with vertical gastric division	67
	with interposed Roux gastrojejunostomy and	
	proximal silastic ring.	
(14)	Mini gastric bypass.	70
(15)	Diagram of partial ileal bypass operation.	73
(16)	Ileal transposition: a 10-20 cm portion of intact	74
	ileum is transposed into the proximal region of	
	the small intestines. Sham surgeries involved	
	intestinal transections followed by anastomoses.	
(17)	Classic (non-sleeved) duodenal jejunal bypass.	77
(18)	Sleeved duodenal jejunal bypass.	80
(19)	SADI-S. A sleeve gastrectomy is followed by a	81
	duodeno-ileal diversion at 200 cm from the	
	ileocecal junction.	
(20)	Single anastomosis sleeve ileal (SASI) bypass.	84
(21)	Pre- and postoperative HbA1c according to	101
	T2DM severity and duration.	

Abstract

It has been estimated that 190 million people worldwide have diabetes mellitus (DM) and it is likely that this will increase to 324 million by 2025. This epidemic is taking place both in developed and developing countries and the combination of DM, obesity, and metabolic syndrome is now recognized as one of the major threats to human health in the 21st century.

Roux-en-Y gastric bypass (RYGB) is the most commonly performed bariatric operation, ameliorates virtually all obesity-related comorbid conditions, the most impressive being a dramatic resolution of type 2 DM (T2DM). After RYGB, 84% of patients with T2DM experience complete resolution, and virtually all have improved glycemic control. Increasing evidence indicates that the impact of RYGB on T2DM cannot be explained by the effects of weight loss and reduced energy intake alone.

Potential mechanisms underlying that direct antidiabetic impact of RYGB include increased lower intestinal hormones as glucagon-like peptide-1 (GLP-1), altered physiology from excluding ingested nutrients from the upper intestine, and other changes yet to be fully characterized. Research aimed at determining the relative importance of these effects and identifying additional mechanisms promises not only to improve surgical design but also to identify novel targets for antidiabetic medications.

Key words: diabetes mellitus, metabolic syndrome, Roux-en-Y gastric bypass, glucagon-like peptide-1, Obesity, Bariatric surgery.

Introduction

It has been estimated that 190 million people worldwide have diabetes mellitus (DM) and it is likely that this will increase to 324 million by 2025. This epidemic is taking place both in developed and developing countries and the combination of DM, obesity, and metabolic syndrome is now recognized as one of the major threats to human health in the 21st century (*Geloneze*, 2008).

Roux-en-Y gastric bypass (RYGB) is the most commonly performed bariatric operation, ameliorates virtually all obesity-related comorbid conditions, the most impressive being a dramatic resolution of type 2 DM (T2DM). After RYGB, 84% of patients with T2DM experience complete resolution, and virtually all have improved glycemic control. Increasing evidence indicates that the impact of RYGB on T2DM cannot be explained by the effects of weight loss and reduced energy intake alone (*Thaler and Cummings*, 2009).

Potential mechanisms underlying that direct antidiabetic impact of RYGB include increased lower intestinal hormones as glucagon-like peptide-1 (GLP-1), altered physiology from excluding ingested nutrients from the upper intestine, and other changes yet to be fully

characterized. Research aimed at determining the relative importance of these effects and identifying additional mechanisms promises not only to improve surgical design but also to identify novel targets for antidiabetic medications (*Thaler and Cummings*, 2009).

The effect of purely restrictive procedures in improving glucose control is directly proportional to the degree of weight loss (*Mingrone*, 2008).

Two hypotheses have been proposed to explain the early effects of bariatric surgery on T2DM, the hindgut hypothesis and the foregut hypothesis (*Mingrone and Castagneto-Gissey*, 2009).

Rubino and Marescaux have developed an experimental animal model with duodenal exclusion. A surgery with only two anastomoses was performed on rats of the Goto-Kakizaki species, the most widely used animal model of nonobese T2DM. A duodeno-jejunal bypass and a simple enteroenteric anastomosis was performed, preserving the gastric volume (*Pitompo*, 2008).

The continual advances in our knowledge of the pathogenesis and hormonal disorders of morbid obesity lead to the development of new technical options. In Europe, multinational studies are being assembled to look

at a procedure called ileal transposition (IT). First described by Koopmans and Sclafani in 1981. This procedure has actually been proposed as being potentially useful in treating glucose intolerance related to obesity because of the potential for increasing GLP-1 secretion (*Strader et al.*, 2004).

Aim of the work

The aim of this work is to discuss the metabolic syndrome and its pathophysiology, with special focus on the role of minimally invasive laparoscopic procedures in the management of this syndrome.