EFFECT OF GAMMA RAY TREATMENTS ON FABA BEAN AND ITS TOLERANCE TO SALINITY AND ASSESSMENT OF GENOTYPES *VIA* MOLECULAR TECHNIQUES

By

HUDA AHMED ABDEL-SALAM

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Cairo Univ., 2010

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Agronomy)

Department of Agronomy
Faculty of Agriculture
Cairo University
EGYPT

2017

SUPERVISION SHEET

EFFECT OF GAMMA RAY TREATMENTS ON FABA BEAN AND ITS TOLERANCE TO SALINITY AND ASSESSMENT OF GENOTYPES *VIA* MOLECULAR TECHNIQUES

M.Sc. Thesis
In
Agric. Sci. (Agronomy)

By

HUDA AHMED ABDEL-SALAM

B.Sc. Agric. Sci., (Agronomy), Fac. Agric., Cairo Univ., Egypt, 2010

SUPERVISION COMMITTEE

Dr. MAZHAR MOHAMED FAWZI ABDALLA

Professor of Agronomy, Fac. Agric., Cairo University

Dr. EMAN ABD-ELLATIF MOHAMMED

Associate Professor of Agronomy, Fac. Agric., Cairo University

Dr. CLARA REDA AZZAM

Head Researcher, Cell Res. Dep., Field Crops Res. Inst., ARC

Name of Candidate: Huda Ahmed Abdel-Salam Degree: M.Sc.

Title of Thesis: Effect of Gamma Ray Treatments on Faba Bean and its

tolerance to Salinity and Assessment of Genotypes via

Molecular Techniques

Supervisors: Dr. Mazhar Mohamed Fawzi Abdalla

Dr. Eman Abd-Ellatif Mohammed

Dr. Clara Reda Azzam

Department: Agronomy **Branch:**

Approval: 11 / 9 / 2017

ABSTRACT

This study was carried out during 2011- 2015 in the field, greenhouse, and laboratories of Field Crops Research Institute (FCRI), Agricultural Research Center (ARC), Giza, Egypt, to study the effect of gamma irradiation doses (0, 25, 50, 75, 100 Gy) on four varieties of faba bean (Cairo 33, Giza 843, Sakha 2, Nubaria 1) and the response of the four faba bean varieties and the genotypes which developed from its M2 generation to salt tolerance by using five NaCl solution concentrations (0 - 50 - 75 - 100 - 150 mM) in four experiments. The work aimed to increase genetic variations in four cultivars of faba bean by gamma-ray and selection of the genetic compositions tolerant to salinity. Identifying the genetic variations among the used varieties and the newly developed salt-tolerant genotypes produced by gamma irradiation using RAPD and ISSR banding patterns. The higher doses of gamma irradiation decreased plant height at 35 DAS except for Giza843 and plant height at harvest but showed slight increase in number of branches plant⁻¹ and dry weight plant⁻¹ except for Cairo33 variety also, number of pods plant⁻¹ and number of seeds⁻¹increased in Cairo33 and Giza843 than other two varieties. Weight of seeds plant⁻¹ decreased in Cairo33 and Nubaria1 varieties but increased in Giza843 and Sakha2 varieties. Seed index decreased generally except Nubaria 1 and Giza843 varieties. The results indicated that all the traits under study were significantly decreased by increasing the NaCl concentration up to 100 mM concentration with a sharp decline at a concentration of 150 mM. A genotype tolerant to salinity was found (dose 50 Gy on Nubaria 1) and characterized by ISSR primer UBC 827. The molecular characterization of the four faba bean varieties and their newly developed salt-tolerant genotypes were performed using RAPD and ISSR analysis.

Key words: Faba bean, *Vicia faba*, genotype, gamma ray, salinity tolerance, NaCl, ISSR, RAPD.

DEDICATION

I dedicate this work and heartfelt thanks to my Family to help and all the support they lovely offered during my life and my study and my work, for everything they offered to me especially prof. Dr. Naglaa Ashry and prof. Dr. Mohamed El-Nabawy A.R.C for continued assistance. Thanks for prof. Dr. Ramadan Harb professor of Botany, Faculty of Agriculture, Cairo University for his supported and guidance.

ACKNOWLEDGEMENTS

Thanks to Allah, the most Merciful and the most Beneficial. I wish to express my sincere thanks, deepest gratitude and appreciation to prof. Dr. Mazhar Mohamed Fawzi Abdalla who my teacher and leader Professor of Agronomy, Faculty of Agriculture, Cairo University, Dr. Eman Abd Ellatif Mohamed associate professor of Agronomy, Faculty of Agriculture, Cairo University and prof. Dr. Clara Reda Azzam Head Researcher, Cell Res. Dep. Field Crops Research Institute, A.R.C for suggesting the problem, supervision and revision the manuscript of this thesis. Sincere appreciation is also extended to prof. Dr. Wafaa El-Eter who helped me for enforcement the saltlinity experiments, Thanks for Dr. Rehab Ahmed Abd Alrahman Field Crops Research Institute, A.R.C for seed samples multiplication.

CONTENTS

	TIONF LITERATURE
Gamma ray	s mutagens and induction of genetic variation
	linity and breeding faba bean for salt
	narkers associated with salt tolerance S AND METHODS
	rials
	1415
	gamma ray radiation on some growth and yield
	istics of M1 faba bean generation in season 2011-
2012	•
	f salinity concentrations on some seedling
	istics of the four faba bean varieties (pot
•	nt), season 2012-2013
	f salinity concentrations on M2 faba bean
	n on some seedling characteristics at season
2012-201	
	f salinity concentrations on M2 faba bean n on some seedling and yield characteristics
	on some seeding and yield characteristics
	r characterization.
	ND DISCUSSION
	mma ray radiation on some growth and yield
	tics of M1 faba bean 2011-2012
	salinity concentrations on some seedling
characteris [†]	tics of the four faba bean varieties at season
	salinity concentrations on M2 faba bean
	on some seedling characteristics at season
	-
	salinity concentrations on M2 faba bean
	on some seedling and yield characteristics at
	3-2014
	analysis

CONTENTS (continued)	
REFERENCES	101
ARABIC SUMMARY	

INTRODUCTION

Faba bean (*Vicia faba* L.) is one of the ancient cultivated crops widely believed to have originated in the Mediterranean-West Asia region (Tanno and Willcox, 2006 and Tavakkoli *et al.*, 2012) and/or Egypt (Abdalla 1969). It is one of the cultivated species of the family fabaceae (Bulut and Akinci, 2010). Its seeds are consumed dry, fresh, frozen or canned (Duc *et al*, 2010). Leguminous plants are important sources of proteins, vitamins, carbohydrates, fibers and minerals (Lima *et al*, 2011). Faba bean also contributes to farmer's income and improves the soil fertility through biological nitrogen fixation (Duc, 1997 and Mejri *et al*, 2012).

Mediterranean regions are currently experiencing increasing salt stress problems resulting from seawater intrusion into aquifers and irrigation with brackish water (Rana and Katerji, 2000). The primary value of increasing the salt tolerance of crops will be to the sustainability of irrigation (Flowers, 2004). Most crops tolerate salinity to a threshold level above which yields decrease as salinity increases (Swalem, 2000 and Kafi and Goldani, 2001). Cool season food legumes are sensitive to salinity (Saxena *et al*, 1993). Faba bean plants are more sensitive to water stress than other grain leguminous species (McDonald and Paulsen, 1997; Amede and Schubert, 2003 and Khan *et al*, 2010).

A major aim for any crop breeding program is the development of good quality lines with an adequate resistance/tolerance to yield-