Assessment of dry weight by non invasive monitoring of changes in hematocrit in chronic hemodialysis patients

Thesis
Submitted for partial fulfillment of master degree in
Pediatrics

By

Ahmad Helmi Aon

M. B. B. Ch. Faculty of Medicine, Cairo University

Supervised by

Prof. Dr. Fatina Ibrahim Fadel

Professor of Pediatrics
Faculty of Medicine, Cairo University

Ass. Prof. Ayman Emil Eskander

Assistant Professor of Pediatrics Faculty of Medicine, Cairo University

Dr. Samuel Helmi Makar

Lecturer of Pediatrics Faculty of Medicine, Cairo University

Cairo University
Faculty of Medicine
2009

~ (***) アレング アレレング しゃから

Acknowledgement

First of all I thank **ALLAH** for helping me and leading me throughout this work .

I'm greatly honored to work under supervision of *Prof*. *Dr. Fatina Fadel, Professor of Pediatrics, Faculty of Medicine*, *Cairo University*. No words can be sufficient to express my deep gratitude to her and the help she offered to bring this work to light.

I would like to express my sincere appreciation to *Ass. Prof. Dr. Ayman Emil, Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University*. I would like to thank him for his continuous guidance and valuable suggestions.

Also, I would like to express my deep feelings and profound gratitude to *Dr* . *Samuel Makar, Lecturer of Pediatrics, Faculty of Medicine , Cairo University* for his continuous instructing guidance and unlimited help and support. I've gained valuable experience from him .

I would like to thank also all the staff members of the nephrology department, Cairo University for their help, support and cooperation.

Last but not the least, I am deeply thankful and always indebted to my parents and my family, who were always supporting and encouraging me.

Abstract

Background: Fluid balance is an integral component of hemodialysis (HD) treatments to prevent under- or overhydration, both of which have been demonstrated to have significant effects on intradialytic morbidity and long-term cardiovascular complications. Fluid removal is usually achieved by ultrafiltration to achieve a clinically derived value for "dry weight".

Objectives: To demonstrate the value of non invasive monitoring of hematocrit during HD in better understanding of hemodynamics in chronic HD patients, better estimation of the dry weight compared to conventional methods in pediatric age group and decreasing the frequency of intradialytic morbid events (IME).

Methods: In this present study, the dry weight of 15 chronic HD pediatric patients was assessed using non invasive blood volume monitoring (NIVM) device and this was compared to the dry weight previously assigned to these patients based on conventional clinical methods. Changes in blood pressure readings together with the frequency of IME, before and after dry weight estimation using NIVM, were recorded and compared.

Key words: Dry weight, blood volume monitoring, hematocrit, intradialytic morbid events.

Contents

Topic		Page number
Abstract		5
List of abbreviations		6
List of figures		9
List of tables		11
Introduction and aim of the work		12
	CHAPTER 1: Chronic kidney disease	14
Review of literature	CHAPTER 2 : Kidney failure and renal replacement therapy	25
	CHAPTER 3 : Hemodynamic instability during hemodialysis	41
	CHAPTER 4 : Dry weight assessment	48
	CHAPTER 5 : Blood volume monitoring	62
Subjects and methods		73
Results		78
Discussion		93
Summary		103
Appendix		104
References		110
Arabic summary		122

List of abbreviations

¹²⁵ I-HSA	Radioiodinated Human salt-free albumin	
ABPM	Ambulatory blood pressure monitoring	
ACE	Angiotensin converting enzyme	
Alb.	Albumin	
ALP	Alkaline phosphatase	
ANP	Atrial natriuretic peptide	
APD	Automated Peritoneal dialysis	
ARB	Angiotensin receptor blocker	
AVF	Arteriovenous fistula	
AVG	Arteriovenous graft	
BIS	Bioimpedance spectroscopy	
BP	Blood pressure	
BUN	Blood urea nitrogen	
BV	Blood volume	
BW	Body weight	
Ca	Calcium	
CAPD	Continuous ambulatory peritoneal dialysis	
C_{Cr}	Creatinine clearance	
cGMP	Cyclic Guanidine Monophosphate	
CIN	Chronic interstitial nephritis	
CKD	Chronic kidney disease	
CLM III	Crit-line monitor III	
CMV	Cytomegalovirus	
CRF	Chronic renal failure	
CRI	Chronic renal insufficiency	
DBP	Diastolic blood pressure	
DBPI	Diastolic blood pressure index	
ECF	Extra cellular fluid	
ECV	Extra cellular volume	
ESRD	End stage renal disease	
FSGS	Focal segmental glomerulosclerosis	
GFR	Glomerular filtration rate	
GN	Glomerulonephritis	
Hct	Hematocrit	
HD	Hemodialysis	
HDF	Hemodiafiltration	
HGB	Hemoglobin	
HLA	Human leucocytic antigen	

HUS	Hemolytic uremic syndrome
ICV	Intracellular volume
IDH	Intradialytic hypotension
IDWG	Interdialytic weight gain
IgA	Immunoglobulin A
IME	Intradialytic morbid events
IU	International unit
IVCD	Inferior vena caval diameter
K	Potassium
K/DOQI	Kidney Disease Outcome Quality Initiative
LVMI	Left ventricular mass index
MARP	Million of the age related population
MBP	Mean blood pressure
MBPI	Mean blood pressure index
Meq/L	Milliequivalent per litre
MFBIS	Multifrequency bioimpedance spectroscopy
MPGN	Membranoproliferative glomerulonephritis
Na	Sodium
NAPRTCS	North America Pediatric Renal Trials and Collaborative
	Study
NHANES III	Third National Health and Nutrition Examination Survey
NIVM	Non invasive blood volume monitoring
·- · - · -	
NKF	National Kidney Foundation
NKF P	National Kidney Foundation Phosphorus
NKF P	National Kidney Foundation
NKF	National Kidney Foundation Phosphorus
NKF P P creat.	National Kidney Foundation Phosphorus Plasma creatinine
NKF P P creat. PD	National Kidney Foundation Phosphorus Plasma creatinine Peritoneal dialysis
NKF P P creat. PD PET	National Kidney Foundation Phosphorus Plasma creatinine Peritoneal dialysis Peritoneal equilibration test
NKF P P creat. PD PET PRR	National Kidney Foundation Phosphorus Plasma creatinine Peritoneal dialysis Peritoneal equilibration test Plasma refill rate
NKF P P creat. PD PET PRR PTH	National Kidney Foundation Phosphorus Plasma creatinine Peritoneal dialysis Peritoneal equilibration test Plasma refill rate Parathormone hormone
NKF P P creat. PD PET PRR PTH PV	National Kidney Foundation Phosphorus Plasma creatinine Peritoneal dialysis Peritoneal equilibration test Plasma refill rate Parathormone hormone Plasma volume
NKF P P creat. PD PET PRR PTH PV Q _B	National Kidney Foundation Phosphorus Plasma creatinine Peritoneal dialysis Peritoneal equilibration test Plasma refill rate Parathormone hormone Plasma volume Blood flow rate
NKF P P creat. PD PET PRR PTH PV Q _B R	National Kidney Foundation Phosphorus Plasma creatinine Peritoneal dialysis Peritoneal equilibration test Plasma refill rate Parathormone hormone Plasma volume Blood flow rate Resistance Red blood cells Red cell volume
NKF P P creat. PD PET PRR PTH PV Q _B R RBCs	National Kidney Foundation Phosphorus Plasma creatinine Peritoneal dialysis Peritoneal equilibration test Plasma refill rate Parathormone hormone Plasma volume Blood flow rate Resistance Red blood cells Red cell volume Radioactive immunosorbent assay
NKF P P creat. PD PET PRR PTH PV QB R RBCs RCV	National Kidney Foundation Phosphorus Plasma creatinine Peritoneal dialysis Peritoneal equilibration test Plasma refill rate Parathormone hormone Plasma volume Blood flow rate Resistance Red blood cells Red cell volume
NKF P P creat. PD PET PRR PTH PV Q _B R RBCs RCV RIA	National Kidney Foundation Phosphorus Plasma creatinine Peritoneal dialysis Peritoneal equilibration test Plasma refill rate Parathormone hormone Plasma volume Blood flow rate Resistance Red blood cells Red cell volume Radioactive immunosorbent assay
NKF P P creat. PD PET PRR PTH PV Q _B R RBCs RCV RIA RRF	National Kidney Foundation Phosphorus Plasma creatinine Peritoneal dialysis Peritoneal equilibration test Plasma refill rate Parathormone hormone Plasma volume Blood flow rate Resistance Red blood cells Red cell volume Radioactive immunosorbent assay Residual renal failure Renal replacement therapy Systolic blood pressure
NKF P P creat. PD PET PRR PTH PV QB R RBCs RCV RIA RRF RRT	National Kidney Foundation Phosphorus Plasma creatinine Peritoneal dialysis Peritoneal equilibration test Plasma refill rate Parathormone hormone Plasma volume Blood flow rate Resistance Red blood cells Red cell volume Radioactive immunosorbent assay Residual renal failure Renal replacement therapy Systolic blood pressure Systolic blood pressure index
NKF P P creat. PD PET PRR PTH PV Q _B R RBCs RCV RIA RRF RRT SBP	National Kidney Foundation Phosphorus Plasma creatinine Peritoneal dialysis Peritoneal equilibration test Plasma refill rate Parathormone hormone Plasma volume Blood flow rate Resistance Red blood cells Red cell volume Radioactive immunosorbent assay Residual renal failure Renal replacement therapy Systolic blood pressure Systolic blood pressure index Serum creatinine
NKF P P creat. PD PET PRR PTH PV QB R RBCs RCV RIA RRF RRT SBP SBPI	National Kidney Foundation Phosphorus Plasma creatinine Peritoneal dialysis Peritoneal equilibration test Plasma refill rate Parathormone hormone Plasma volume Blood flow rate Resistance Red blood cells Red cell volume Radioactive immunosorbent assay Residual renal failure Renal replacement therapy Systolic blood pressure Systolic blood pressure index

SLE	Systemic lupus erythematosus	
TBV	Total blood volume	
TBW	Total body water	
TQA	Transcutaneous Access	
TUPEPD	Turkish Pediatric Peritoneal Dialysis	
UF	Ultrafiltration	
UFR	Ultrafiltration rate	
UKM	Urea kinetic modeling	
USRDS	United States Renal Data System	
VCD	Vena caval diameter	
Xc	Reactance	
Z	Impedance	
$\Delta \mathrm{BV}$	Blood volume change	
ΔRBV	Relative blood volume change	

List of figures

Figure number	Contents	Page number
Figure 1	Level of GFR at initiation of renal replacement therapy.	27
Figure 2	Percent distribution of prevalent dialysis modality and transplant rates in the 0–19 age group in 2003 (<i>USRDS</i>).	29
Figure 3	Hemodialysis vascular access by native arteriovenous fistula and polytetrafluoroethylene Graft.	32
Figure 4	One-year survival probabilities for first cadaveric and living donor allografts and their recipients, adjusted for age, sex, race, and primary diagnosis.	40
Figure 5	Schematic representation of water movement during hemodialysis.	
Figure 6	The three chronological phases of pre-dialysis mean arterial pressure and post-dialysis weight.	
Figure 7	Anterior-posterior IVCD measured by two- dimensional and Doppler recording below the diaphragm.	56
Figure 8	Diagram representing high-frequency and low-frequency current distribution in cell suspensions.	
Figure 9	Composition of blood and components of blood volume.	64
Figure 10	Fluid exchanges through capillary membranes in formation and removal of interstitial fluid.	
Figure 11	How indicator dilution technique is used to measure blood volume.	
Figure 12	Sex distribution among study group.	

Figure 13	Original renal disease distribution among study group.	80
Figure number	Contents	Page number
Figure 14	Frequency of IME during phase 1 and phase 3 of the study.	
Figure 15	Type of curve and refill of study group during phase 1.	84
Figure 16	Downward adjustment of dry weight in a patient with curve A.	85
Figure 17	Downward adjustment of dry weight in a patient with curve B and positive postdialysis vascular refill.	86
Figure 18	Confirmation and approval of clinically estimated dry weight using the CRIT-LINE monitor.	
Figure 19	Upward adjustment of dry weight in a patient with curve C.	
Figure 20	Comparison of mean blood pressure indices during phase 1 & 3 for the group of low clinically estimated dry weight.	
Figure 21	Comparison of blood pressure indices during phase 1 & 3 for the group of high clinically estimated dry weight.	
Figure 22	Blood volume change and refill for the group of patients with high clinically estimated dry weight.	
Figure 23	Blood volume change and refill for the group of patients with apprpriate clinically estimated dry weight.	
Figure 24	Blood volume change and refill for the group of patients with low clinically estimated dry weight.	109

List of tables

Table number	Contents	Page number
Table 1	Normal GFR in children and young adults.	16
Table 2	Diagnosis distribution of North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) chronic renal insufficiency (CRI) patients.	19
Table 3	Comparison of methods.	61
Table 4	Descriptive statistics of age and duration on hemodialysis in the study group.	79
Table 5	Descriptive statistics of lab data of all cases included in the study.	81
Table 6	Descriptive statistics of serum albumin, hemoglobin and hematocrit of all cases included in the study during phase 1 and phase 3.	81
Table 7	Comparison between IME and hypotension during phase 1 and 3.	83
Table 8	Comparison of blood pressure readings and indices during phase 1 and 3 of the study.	83
Table 9	Comparison between combined type of curve and refill of study group during phase 1 and on starting phase 3.	84
Table 10	Comparison of blood pressure readings & IME during phase 1 & 3 for the group of low clinically estimated dry weight.	89
Table 11	Comparison of blood pressure readings & IME during phase 1 & 3 for the group of high clinically estimated dry weight.	91
Table 12	Comparison of blood pressure readings & IME during phase 1 & 3 for the group of appropriate clinically estimated dry weight.	92
Table 13	Descriptive statistics of each patient individually.	105

Introduction and aim of the work:

Introduction:

The current focus on Kt/V as an index for adequacy of dialysis in terms of solute removal ignores the contribution of volume as an independent factor influencing outcome. Ultrafiltration adequacy is related to the concept of dry weight achievement. Patient's dry weight is defined as the weight at the termination of a regular dialysis session, below which the patient will become symptomatically hypotensive. Incorrect estimation of dry weight will lead either to chronic fluid overload or chronic dehydration. Unfortunately, there is no standard measure of dry weight and as a consequence it is difficult to ascertain adequacy of fluid removal for an individual patient. Additionally, there is a lack of information on the effect of ultrafiltration on fluid shifts in the extracellular and intracellular fluid spaces. It is evident that a better understanding of both interdialytic fluid status and fluid changes during hemodialysis is required to develop a precise measure of fluid balance. Intradialytic hypotension continues to be a leading problem, therefore prevention of intradialytic hypotension remains an important challenge to the dialysis physician (*Goldstein, 2004*).

Aim of the work:

To assess the value of non invasive monitoring of hematocrit during HD in better understanding of hemodynamics of chronic HD patients and better estimation of the dry weight compared to conventional methods in pediatric age group, together with minimizing the frequency of IME.

Introduction:

Chronic renal failure (CRF) and chronic renal insufficiency (CRI) are clinical terms used to describe renal dysfunction of varying degrees from mild to severe in nature. In some cases, it is progressive and common to all forms of kidney injury, including that due to developmental, genetic, immunologic, metabolic, traumatic, or infectious processes. Rather than CRI or CRF, the term chronic kidney disease (CKD) more clearly defines renal dysfunction as a continuum, rather than a discrete change in renal function based on the glomerular filtration rate (GFR) (Tarak and Bradley, 2007).

Definition:

CKD is defined as: Kidney damage for 3 months, as defined by structural or functional abnormalities of the kidney, with or without a decreased GFR, manifested by either pathological abnormalities; or markers of kidney damage, including abnormalities in the composition of blood or urine, or abnormalities in imaging tests. *Or,* GFR < 60 mL/min per 1.73 m² for 3 months, with or without kidney damage *(NKF. K/DOQI clinical practice guidelines, 2002).*

A staging system for stratification of CKD based on the level of kidney function, independent of the primary renal diagnosis has been developed:

Stage 1: Kidney damage with normal GFR (≥90 mL/min/1.73 m²).

<u>Stage 2:</u> Kidney damage with mild decrease in GFR (GFR between 60 to 89 mL/min/1.73 m²).

<u>Stage 3:</u> Moderate decrease in GFR (GFR between 30 and 59 mL/min/1.73 m²).

<u>Stage 4:</u> Severe decrease in GFR (GFR between 15 and 29 mL/min/1.73 m²).

Stage 5: Kidney failure (GFR of less than 15 mL/min/1.73 m²) (NKF. K/DOQI clinical practice guidelines, 2003).

The use of serum creatinine alone is widely acknowledged as an inaccurate measure. It is well known that >50% of functioning nephron mass must be lost prior to a perceivable change in serum creatinine, and

that the absolute levels need to be interpreted within the context of muscle mass and gender. Thus, serum creatinine alone as a measure of kidney function is a poor tool *(Levin, 2003)*.

Irrespective of the formula used to estimate GFR e.g. Schwartz formula, the important issue is that any calculation is a better estimate of kidney function than serum creatinine alone. The purpose of the guidelines emphasis on estimated GFR is to improve the identification of kidney disease by transforming serum creatinine into a more meaningful measure. The implications of this approach and improvement in identification of significant kidney impairment were studied. It was found not only that a single time point measurement of creatinine when transformed could be interpreted as significantly abnormal, but of those patients with abnormal kidney function, previous values tabulated up to 4 years demonstrated previously a steady decline in kidney function, despite normal range values for serum creatinine; this was true for over 20% of the population in whom there was available data (*Duncan et al.*, 2001).

The GFR is equal to the sum of the filtration rates in all of the functioning nephrons; thus, estimation of the GFR gives a rough measure of the number of functioning nephrons. A reduction in GFR implies either progression of the underlying disease or the development of a superimposed and often reversible problem, increase in GFR, on the other hand, is indicative of improvement in renal function, whereas a stable GFR implies a stable condition (*Tarak and Bradley, 2007*).

The normal GFR varies with age, gender, and body size. Children achieve adult values for mean GFR at approximately two years of age (table 1).

Table 1: Normal GFR in children and young adults

Age (gender)	Schwartz equation	Mean GFR \pm SD mL/min/1.73m ²
1 week (males and females)	GFR=0.33*(Length/SCr) in Preterm	40.6±14.8
	GFR=0.45*(Length/SCr) in Term	
2-8 weeks (males and females)	GFR=0.45*(Length/SCr)	65.8±24.8
>8 weeks (males and females)	GFR=0.45*(Length/SCr)	95.7±21.7
2-12 years (males and females)	GFR=0.55*(Length/SCr)	133.0±27.0
13-21 years (males)	GFR=0.70*(Length/SCr)	140.0±30.0
13-21 years (females)	GFR=0.55*(Length/SCr)	126.0±22.0

SD: standard deviation; **sCr**: serum creatinine in mg/dL.

(NKF. K/DOQI clinical practice guidelines, 2002)

Multiple prediction equations, therefore, have been developed to estimate GFR from the serum creatinine concentration. In children, the level of GFR can be estimated from the Schwartz equation. Although this equation is imprecise with more advanced renal insufficiency, it is convenient and practical in daily clinical practice. In the Schwartz equation, GFR is calculated by the following:

GFR = $K \times Height (cm) / P_{creat}$.

Height represents the body height measured in centimeters, and P_{creat}. is the plasma creatinine. The constant K is directly proportional to the muscle component of body, and varies with age. The value for K is 0.33 in premature infants through the first year of life, 0.45 for term infants through the first year of life, 0.55 in children and adolescent girls, and 0.7 in adolescent boys (Schwartz and Gauthier, 1985; Schwartz et al., 1984).

Incidence:

The epidemiological studies that have been performed provide evidence that end stage renal disease (ESRD) represents the "tip of the iceberg" of CKD and suggest that patients with earlier stages of disease are likely to exceed those reaching ESRD by as much as 50 times. Large population-based studies, such as the Third National Health and Nutrition Examination Survey (NHANES III), have made it possible to estimate the incidence and prevalence of CKD in the adult population. According to this report, the prevalence of patients with early stages of CKD (stages 1–4; 10.8%) is approximately 50 times greater than the prevalence of ESRD (stage 5; 0.2%) (Coresh et al., 2003).

There is no comparable information available in the United States on the prevalence of the earlier stages of CKD in children and its relationship to ESRD. This is, in large part, due to differences in disease etiology for children and adults (Warady and Chadha, 2007).

Population-based data from Italy (ItalKid Project) has reported a mean incidence of preterminal CKD ($C_{Cr} < 75 \text{ mL/min per } 1.73 \text{ m}^2$) of 12.1 cases per year per million of the age-related population (MARP), with a point prevalence of 74.7 per MARP in children younger than 20 years of age *(Ardissino et al., 2003)*.

The incidence rate of ESRD, adjusted for race and gender, is much higher among adults than among children. Data from the USRDS