value of Soluble Mesothelin Related Protein (Mesomark) and Osteopontin as Markers for Malignant Pleural Mesothelioma

Thesis
Submitted for Partial Fulfillment of M.D degree
In Chest Diseases

*By*Ehab Thabet Aziz

M.B.B. Ch., M. Sc. of Chest Diseases, Ain Shams University

Under Supervision Of

Prof./ Samiha Sayed Ahmed Ashmawi

Professor of Chest Diseases

Faculty of Medicine – Ain Shams University

Prof./ Adel Mohamed Saeed
Professor of Chest Diseases
Faculty of Medicine - Ain Shams University

Dr./ Nevine Mohamed Abd El-Fattah

Lecturer of Chest Diseases

Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2010

GList Of Contents

	Page
List of Abbreviations	I
List of Tables	III
List of Figures	IV
Introduction	1
Aim of the Work	
Review of Literature	
Embryology of the pleura	6
Anatomy of the pleura	8
Histology of the pleura	12
Malignant Mesothelioma	
Pathology of malignant pleural mesothelioma	
Pathogenesis of malignant pleural mesothelioma	
Staging of malignant pleural mesothelioma	
Diagnosis of malignant pleural mesothelioma	46
Treatment of malignant pleural mesothelioma	79
Patients and Methods	90
Results	103
Discussion	124
Summary	144
Conclusions	149
Recommendations	150
References	151
Appendix	182
Arabic Summary	

*©***Acknowledgement***®*

Above And Before All Thanks To GOD.

I would like to express my sincere gratitude and appreciation to **Prof. Samiha Sayed Ahmed Ashmawi** Professor of Chest Diseases, Faculty of Medicine, Ain Shams University for her valuable knowledge, great help, meticulous supervision and kind encouragement during this work. Words of thanks are minute to express my gratitude for her.

I would like also to acknowledge the generous help and tremendous support offered by **Prof. Adel Mohamed Saeed** Professor of Chest Diseases Faculty of Medicine, Ain Shams University.

I would offer special thanks for **Dr. Nevine Mohamed Abd El-Fattah** Lecturer of Chest Diseases Faculty of Medicine, Ain Shams University for her marvelous effort.

I would like to thank **Dr** . Magdy Yousef Consultant of Clinical Pathology and head of laboratory department in Abbassia Chest Hospital for his great effort in the laboratory work.

Ehab Thabet Aziz

☞ Dedication

50
MY
FAMILY

७ List Of Abbreviations №

5 fu	: 5 Fluro uracil
ADA	: Adenosine deaminase
AUC	: Area Under the Curve
BCG	: Bacillus Calmette-Guerin Vaccine
BMI	: Body Mass Index
L.	
BRD	: Benign Respiratory Diseases
CALCR	: Cisplatinum
CALGB	: Cancer and leukaemia group B
CBC	: Complete Blood Count (Picture)
CEA	: Carcinogenic Embryonic Antigen
CGy	: Centi Grey
CI	: Confidence Interval
COPD	: Chronic Obstructive Pulmonary Diseases
CT	: Computed Tomography
CXR	: Chest X Ray
dl	: deci-litre
DMP1	: Dentin Matrix Protein 1
DNA	: Deoxyribonucleic acid
EGFR	: Epidermal Growth Factor Receptor
ELISA	: Enzyme Linked Immuno Sorbent Assay
EM	: Electron Microscope
ENAM	: Enamelin
EPP	: Extra-Pleural Pneumonectomy
Eta-1	: Early T lymphocyte activation 1
EWG	: Environmental Working Group
FDG	: 2-Floro 2-deoxy-D glucose
FEV1	: Forced Expiratory Volume in the first second
FOB	: Fiber Optic Bronchoscope
GCV	: Ganciclovir
gm	: Gram
Gy	: Grey
H&E	: Haematoxyline and Eosin
HBME-1	: Anti mesothelial antibody
Hsvtk	: Herpes Simplex Virus Thymidine Kinase
I 125	: Iodine 125
ICM	: Ischemic Cardio-Myopathy
IG	: Immunoglobulin
IL	: Interleukins
INF	: Interferon
Ir 192	: Iridium 192
KD	: Kilo-Dalton
LC	: Lung Cancer
LDH	: Lactate Dehydrogenase
LDR	: Length / Diameter Ratio
LUK	. Lengui / Diameter Rano

™ List Of Abbreviations (Cont.) **™**

	: Liposomal- Cisplatin analogue (Liposome-
L-NDDP	entrapped Cisplatin)
LSD	: Least Significant Difference
M	: Mitomycin
mAb	: Monoclonal Antibody
MEPE or MEP	: Matrix Extra-cellular Phophoglycoprotien
ml	: Millilitre
	: Micro meter
μm MM	: Malignant Mesothelioma
	: Millimeter
mm MPF	
MPM	: Megakaryocyte Potentiating Factor
	: Malignant Pleural Mesothelioma
MRI	: Magnetic Resonance Imaging
MRP	: Multi Drug Resistance Associated Protein
NCI	: National Cancer Institute
ng	: Nano gram
NK	: Natural Killer
nM/L	: Nano Mole/ Litre
NSCLC	: Non Small Cell Lung Cancer
OPN	: Osteopontin
OV569	: Ovarian monoclonal antibody
P 32	: Radioactive Phosphorus 32
PA	: Postero-Anterior
PAS	: Periodic Acid Schiff
PDGF	: Platelet Derived Growth Factor
PDT	: Photo Dynamic Therapy
PET	: Positron Emission Tomography
RB	: Retinoblastoma
ROC	: Receiver Operating Characteristic
RPCI	: Ross Well Park Center Institute
Rt	: Right
RT	: Radiotherapy
SIBLING	: Small Intgrin-Binding Ligand; N-Linked
	Glycoprotein
SMRP	: Soluble Mesothelin Related Protein
SPSS	: Statistical Package for Social Science
SV 40	: Simian Virus 40
TAG	: T Antigen
TB	: Tuberculosis
TNM	: Tumor, Node, and Metastasis
USA	: United States Of America
VATS	: Video Assisted Thoracoscopy Surgery
VEGF	: Vascular Endotelial Growth Factor
Vp 16	: Vepsid
VS	
	: Versus

♥ List of Tables ♥

	Page
Table 1: Non asbestos causes of mesothelioma	39
Table 2: Staging proposed by Chahinian and Rusch (1992)	41
Table 3: Demographic characteristics of the studied groups	104
Table 4: The clinical data among the studied groups at time of presentation	106
Table 5: Diagnostic methods of mesothelioma group (1)	107
Table 6: The percentage of different types of malignancies among group (2)	109
Table 7: The percentage of different causes of exudative pleural effusion among group (3)	110
Table 8: The percentage of different causes of transudative pleural effusion among group (4)	110
Table 9: Comparison between SMRP values among the studied groups	111
Table 10: Comparison between Osteopontin values among the studied groups	114
Table 11: Sensitivity and specificity of SMRP at cut-off point (0.93 nM/L) between group (1) and groups (2, 3, and 4)	117
Table 12: Sensitivity and specificity of SMRP at cut-off point (0.93 nM/L) between group (1) and group (2)	118
Table 13: Sensitivity and specificity of SMRP at cut-off point (0.93 nM/L) between group (1) and group (3)	119
Table 14: Sensitivity and specificity of SMRP at cut-off point (0.93 nM/L) between group (1) and group (4)	120
Table 15: Sensitivity and specificity of SMRP at cut-off point (1.48 nM/L) between group (1) and groups (2, 3, and 4)	121
Table 16: Sensitivity and specificity of SMRP at cut-off point (2 nM /L) between group (1) and groups (2, 3, and 4)	122

७ List of Figures

	<u>Page</u>
Figure 1: Histology of the pleura	14
Figure 2: Diagrammatic appearance of malignant pleural mesothelioma	18
Figure3: Gross pathology of pleural mesothelioma.	19
Figure 4, 5 :Lateral views of malignant mesothelioma in excised lungs showing the extension of the mesothelial tissue	19
Figure6: Pleural masses in a 66-year-old man who underwent extra pleural pneumonectomy for MPM	20
Figure 7: Haematoxylin and Eosin (H&E) stain of a slide with epithelial variant of mesothelioma with characteristic cell nests of epithelial cells	23
Figure8: Epithelioid malignant pleural mesothelioma (MPM). Electron photomicrograph shows the long, slender microvilli typical of the diagnosis.	23
Figure9: (H&E) stain of malignant mesothelioma, which demonstrates the sarcomatous pattern where tumor cells are spindle shaped	24
Figure 10: Microscopic appearance of biphasic mesothelioma with H&E stain	25
Figure 11: Microscopically, the fibrous pleural plaque is composed of dense layers of collagen	28
Figure 12: Crude asbestos	29
Figure 13: Crude asbestos	29
Figure 14: Asbestos crystals and microscopic appearance of asbestos fibers	29
Figure 15: Asbestos body	30
Figure 16: The asbestos fiber becomes coated with iron and calcium, that is why it is often referred to as a "ferruginous body"	30
Figure 17: Gross appearance of asbestos fibers	31
Figure 18: Microscopic appearance of asbestos fibers with different stains	31

™ List of Figures (Cont.) **™**

	<u>Page</u>
Figure 19: Microscopic appearance of amosite fibers	32
Figure 20: Microscopic appearance of chrysotile fibers	32
Figure 21: Microscopic appearance of crocidolite fibers	32
Figure 22:Panel A: Frozen hemi-thorax in a 68-year-old man with MPM and no history of asbestos exposure. PA radiograph	50
Figure 23: Pleural thickening in a 68-year-old man with MPM. Un-enhanced CT scan (mediastinal window)	52
Figure 24: Pleural effusion in a patient with MPM. Panel A: Contrast- enhanced CT scan (mediastinal window) Panel B: CT section obtained at the level of the heart	52
Figure 25: MPM of the right lung in a 58-year-old man. Panel A: Axial T1-weighted (869/12) MR image. Panel B: Axial T2-weighted (2,571/90) MR image at a similar level allows differentiation between the tumor (curved arrow), which has intermediate signal intensity, and the pericardial effusion (straight arrow) and pleural fluid, which have high signal intensity. Panel C: Coronal T1-weighted (895/20) MR image shows the intermediate signal intensity of the tumor mass in the inferior portion of the contracted right hemi-thorax. The tumor is invading the pericardium (arrow) and obscuring the high signal intensity of the pericardial fat	53
Figure 26: PET CT for a patient with right side malignant pleural mesothelioma	56
Figure 27: PET scan for the same patient	56
Figure 28: Pleural cytology for a patient with malignant pleural mesothelioma	58
Figure 29: VATS for diagnosis of MPM. Panel A: Photograph obtained during a VATS procedure shows an early mesothelioma. The lesion has the appearance of pleural inflammation, and multiple biopsy samples were required for diagnosis. Panel B: Photograph obtained during a VATS procedure shows large tumor nodules arising from the parietal pleura. Panel C: Photograph obtained during a VATS procedure shows invasion of the visceral pleura and the lung (L) by nodules of tumor	61
Figure 30: A. Epithelioid type. B. Mixed type. C. Sarcomatous type. D. Unclassified type	64

™ List of Figures (Cont.) **™**

<u>Pag</u>	<u>e</u>
Figure 31: Immuno-histo-chemical panel for a malignant tissue suspected to be malignant pleural mesothelioma	
Figure 32: Transmission electron micrograph of an epithelial mesothelioma showing long microvilli	
Figure 33: Schematic diagram of production and digestion of ERC/mesothelin, and ELISA system. The primary product of the ERC/ mesothelin gene is a 71 kDa precursor protein. This protein is cleaved physiologically, releasing its 31 kDa N-terminal fragment, designated as N-ERC/mesothelin, into the blood. The 31 kDa N-terminal fragment is detected by a sandwich ELISA system containing two antibodies against the N-terminal fragment	
Figure 34: Immuno-histo-chemical staining for mesothelin using anti- mesothelin antibody (rabbit IgG) in pleural mesothelioma specimens. Mesothelin protein was highly expressed in tumor cells and membranous reactivity was evident	
Figure 35: Mesomark concentration versus absorbance	
Figure 36: Osteopontin concentration versus absorbance	
Figure 37: Bar chart for the mean age among the studied groups	
Figure 38: Pie chart for different diagnostic methods in group (1) 108	
Figure 39: Bar chart for SMRP levels in the studied groups	
Figure 40: Pie chart for SMRP levels in the studied groups	
Figure 41: Bar chart for Osteopontin levels in the studied groups	
Figure 42: Pie chart for Osteopontin levels in the studied groups	
Figure 43: The ROC curve for SMRP	

INTRODUCTION

Malignant mesothelioma was a rare tumor but it became common especially in areas where asbestos exposure was common either in the environment or in the workplaces, it tended to be an aggressive tumor that arised from the serosal surface cells lining the pleura, peritoneum and pericardium (*Price and Ware*, 2004).

Despite of decreasing or even preventing industries using asbestos, the incidence of malignant mesothelioma is increasing, which may be due to the delay in the patient's complaint or the long latency period between the exposure and the developing of mesothelioma, as up to 99% of asbestos associated cases have latency period more than 15 years from first exposure to death due to the disease with median latent period being found to be 32 years (*Lanphear and Buncher*, 1992).

Asbestos exposure is the primary etiological factor known for mesothelioma and association to occupational asbestos exposure has been documented in 80% of mesothelioma cases. The majority of mesotheliomas occur with amphibole fibers exposure. In general a much smaller fibers burden is associated with mesothelioma induced by amphibole (1/400th asbestos burden) compared with chrysolite. Males are

at a much higher risk for mesothelioma than females due to occupational exposure (plumbers, pipe fitters, insulation installers, and shipyard workers) (*Puntoni et al.*, 2003).

During the past several decades, cytogenetic studies have been performed in an attempt to identify specific non-random alterations that may prove to be of diagnostic value. Despite these efforts, karyotyping of mesotheliomas did not provide diagnostic anomalies. Evolving of molecular specific techniques, such as tumor suppressor gene methylation and profiling have yielded micro-array gene insight mesothelioma oncogenesis, diagnosis, prognosis and potential therapy (Kettunen et al., 2001).

Sensitive, specific and less invasive markers can facilitate early diagnosis of malignant mesothelioma, and early therapeutic intervention in patients with mesothelioma is more likely to be beneficial than late intervention. Thus, simple specific and sensitive markers for early detection of malignant mesothelioma could lead to more effective treatment. Mesothelin is a 40 kDa glycoprotein that is attached to the cell surface by phosphatidylinositol and is thought to have a role in cell-adhesion and possibly in cell-to-cell recognition and signaling, it is synthesized as a precursor 69 kDa protein and forms two proteins, the membrane-bound mesothelin and a

soluble protein megakaryocyte potentiating factor (MPF) (*Urwin and Lake, 2000*).

A third member of the mesothelin / MPF family was identified by its ability to bind to OV569 here, it is referred to any soluble molecule related to mesothelin / MPF that is recognized by OV569 as soluble mesothelin related. Increased concentrations of soluble mesothelin related proteins (SMRP) have been detected in serum samples of patients with ovarian carcinoma and in a few patients with other carcinomas (*Robinson et al.*, 2003).

Since most mesotheliomas retain some mesothelial differentiation characteristics, raised concentrations of SMRP usually occur in the serum of patients with mesothelioma (Scholler et al., 1999).

The sure diagnosis of any malignant disease is the tissue biopsy from the tumor, but with the use of new markers which have a very high specificity which reaches 100% and high sensitivity which reaches about 84% (*Robinson et al., 2003*), they may be very helpful in the diagnosis of the disease and it may be very beneficial in the early detection of the disease in the exposed persons who are at risk of developing of malignant mesothelioma and their relatives who are exposed to the same pollutants in the areas of inhabitants or dealing with worker's

clothes which are carrying the asbestos fibers to the worker's homes.

A significantly higher concentration of osteopontin was detected in patients with diagnosed cases of mesothelioma compared to subjects with asbestos exposure. The levels of osteopontin were not significantly different in unexposed control subjects versus those subjects exposed to asbestos. Nearly 78% of mesothelioma patients showed elevated osteopontin levels. In over 85% of cases osteopontin levels differentiated patients with mesothelioma versus benign lung conditions (*Pass et al.*, 2005) (A).

AIM OF THE WORK

The aim of this work is to determine the level of Soluble Mesothelin Related Protein (Mesomark) and Osteopontin in serum to evaluate their specificity and sensitivity as new and less invasive markers in diagnosis of malignant pleural mesothelioma comparing them with pleural biopsy.