TREATMENT OF SOME EXHAUSTED CATALYSTS USED IN METHANOL INDUSTRY

Bv

Ali Mohammed Al-Marri

B.Sc.in chemistry-faculty of scince- Qatar University, 2000

A Thesis Submitted for Partial Fulfillment of The Requirement for the The Master Degree in Environmental Science

Department of Basic Environmental Science Institute of Environmental Studies & Research Ain Shams University

معالجة عوادم بعض عوامل الحفز المستخدمة في صناعة الميثانول

رسالة مقدمة من الطالب

على محمد الهيمس المري

بكالوريوس الكيمياء – كلية العلوم – جامعة قطر – ۲۰۰۰

لاستكمال متطلبات الحصول على درجة الماجستير في العلوم البيئية

قسم العلوم البيئية الأساسية معهد الدراسات والبحوث البيئية جامعة عين شمس

معالجة عوادم بعض عوامل الحفز المستخدمة في صناعة الميثانول

رسالة مقدمة من

على محمد الهيمس المري

بكالوريوس الكيمياء – كلية العلوم – جامعة قطر – • • • ٢

لاستكمال متطلبات الحصول على درجة الماجستير فى العلوم البيئية قسم العلوم البيئية الأساسية

تحت إشراف:

١ –أ.د. سعد السيد محمد حسن

أستاذ الكيمياء التحليلية والبيئية- كلية العلوم - جامعة عين شمس

٢- د. طه عبد العظيم محمد عبد الرازق

استاذ مساعد الكيمياء التحليلية – قسم العلوم الاساسية – معهد الدراسات والبحوث البيئية – جامعة عين شمس

٣- د. سعيد هاشم المير

مدرس الكيمياء - قسم الكيمياء وعلوم الاراضي - كلية الأداب والعلوم - جامعة قطر ختم الاجازة

أجيزت الرسالة بتاريخ / ٢٠٠٩/

موافقة مجلس المعهد موافقة الجامعة ... موافقة الجامعة ... ٢٠٠٩ /

TREATMENT OF SOME EXHAUSTED CATALYSTS USED IN METHANOL INDUSTRY

By

Ali Mohammed Al-Marri

B.Sc.in chemistry-faculty of scince- Qatar University, 2000

A Thesis Submitted for Partial Fulfillment of The Requirement for the The Master Degree In Environmental Sciences

Under The Supervison of:

1- Prof. Saad El Sayed Mohamed Hassan, D. Sc.

Professor of Analytical and Environmental Chemistry Faculty of Science, Ain Shams University

2- Dr. Taha A. Zim M.A. Razek

Associate Professor of Analytical Chemistry, Basic Sciences Department, Institute of Environmental Studies and Research, Ain Shams University

3- Dr. Saeed H. Al-Meer

Lecturer of Chemistry, Chemistry Department, Faculty of Arts and Sciences, Qatar University, Doha, Qatar

APPROVAL SHEET

TREATMENT OF SOME EXHAUSTED CATALYSTS USED IN METHANOL INDUSTRY

By

Ali Mohammed Al-Marri

Public Works Authroity, Doha, Qatar

This Thesis which submitted for a Master Degree In Environmental Science Has Been Approved by:

Prof. Saad El Sayed Mohamed Hassan

Professor of Analytical & Environmental Chemistry, Faculty of Science, Ain Shams University

Prof. Abdel Fattah Bastawy Farag

Professor of Analytical & Environmental Chemistry, Faculty of Science, Helwan University

Prof. Mona Abulaziz Ahmed

Professor of Analytical Chemistry, Faculty of Girls, Ain Shams University

بسم الله الرحمن الرحيم

"هِنْكِمِالْ هِنْ الْحَالِ عِنْ أَمْنَا لِهُ الْمُنْ الْمُنْ الْمُنْ الْمُنْ الْمُنْ الْمُنْ الْمُنْ الْمُنْ ا

مدق الله العظيم البقرة ٣٢

ACKNOWLEDGMENT

I wish to express my highest appreciation and sincere thanks to Prof. Dr. Saad El-Sayed Mohamed Hassan (D.Sc.) Professor of Analytical Chemistry, Faculty of Science, Ain Shams University, for his kind supervision, valuable advice and continuous help in finishing this study.

My deep gratitude and thanks to Prof. Dr. Taha A.

M. A. Razek, Assistant Professor of Analytical

Chemistry, Institute of Environmental studies and
research, Ain Shams University, for his guidance and
continuous help throughout this work.

I wish also to express my thanks to Dr. Saeed H. Al-Meer, Chemistry Department, Faculty of Arts and Sciences, Qatar University, for great help throughout the progress of this work.

شكر وعرفان

اتقدم بأسمى آيات الشكر والعرفان الى كل من ساهم في خروج هذه الرسالة الى النور واخص بالذكر السادة المشرفين:

الاستاذ الدكتهر/ سعد السيد مدمد دسن- استاذ الكيمياء التحليلية والبيئية وعميد كلية العلوم الاسبق - جامعة عين شمس- أستاذنا الفاضل ومعلمنا الجليل الذي زادني فخراً ان اكون احد تلاميذة و لما أعطاه لي من وقت وجهد ونصح وتوجيه طوال فترة البحث ولما قدمه للبحث من قراءة واهتمام ومعرفة وتصحيح في مسار البحث العلمي.

الدكتهر/ طه عبد العظيم مدهد- استاذ مساعد بمعهد الدراسات والبحوث البيئية-قسم العلوم الاساسية - جامعة عين شمس- شكراً على ما أولاه من توجيه وجهد وما قدمه للبحث العلمي من قراءة واهتمام بمسار بالبحث العلمي. الدكتهر/ سعيد هاشم المير- مدرس بقسم الكيمياء وعلوم الاراضي- كلية العلوم والاداب - جامعة قطر -- شكراً على ما أولاه من توجيه وجهد وما قدمه للبحث العلمي من قراءة واهتمام بمسار بالبحث العلمي.

وفي النهايه اتقدم بخالص الشكر والامتنان والعرفان الى والدي اطال الله في عمره لمساندته ودعمه اللا محدود لي طوال فترة انجاز هذا الدراسة وكذلك الى كل من ساهم بالراي والنصيحه او العون في اخراج هذا البحث.

Contents

	Page
List of Tables	iii
List of Figures	iv
Summary	I
Chapter I	1
Introduction and Literature Review	
I.1. Natural Gas	1
I.1.1. Natural gas in chemical industries	2
I.1.2. Natural gas contaminated with mercury	5
I.1.2.1. Problems resulted from natural gas mercury	7
contamination	
I.2. Mercury	10
I.2.1. Toxicity of mercury	10
I.2.2. Mercury pollution	15
I.2.2.1. Sources of mercury pollution	19
I.2.3 Occupational exposure	28
I.2.4. Removal and recovery of mercury	29
I.2.4.1. Sulfur treatment methods	29
I.2.4.2. Thermal methods	32
I.2.4.3. Adsorption methods	33
I.2.4.4. Biological methods	36
I.2.4.5. Precipitation methods	39
Chapter II	41
Mercury Removal from Exhausted Sorbent used in Methanol	
industry	
Introduction	41
II.1. Materials	43
II.1.1. Adsorbent	43
II.1.2. Natural gas	44
II.1.3. Chemicals	45
II.1.3.1. Reagents	46
II.1.4. Equipment	48
II.2. Methods	52
II.2.1. Removal of mercury using KI/I ₂ solution	52
II.2.2. Removal of mercury using thermal treatment	52
II.2.3. Removal of mercury using different reagents	53
II.2.4. Sample preparation for mercury analysis using ICP-MS	54
II.2.5. Sample preparation for mercury analysis using XRF	54

II.2.6. Sample preparation for mercury analysis using X-ray	55
diffraction	
II.3.Results and Discussion	56
II.3.1. Physical and chemical properties of mercury adsorbent	56
II.3.2. Treatment of adsorbent	58
II.3.2.1. Determination of mercury in untreated adsorbent	58
II.3.2.2. Mineral acids treated adsorbent:	58
II.3.2.3. Iodide / iodine treated adsorbent:	62
II.3.2.4. Thermal treatment	66
II.3.3. Verification of mercury removal	69
II.3.4. Verification of calculation and recovery	71
II.3.5. Conclusions and recommendations	72
Chapter III:	73
Mercury Adsorbent Waste Land filling in Qatar	
III.1. General criteria for site selection and assessment	73
III.2. Landfill design and engineering	74
III.2.1. Considerations for landfills	75
III.2.2. Operational practice	79
III.3. Types of waste landfilled	80
III.4. Landfill design types	83
III.4.1. Co-disposal landfills	84
III.4.2. Entombment (dry) landfills	84
III.4.3. Sustainable landfills	84
III.5. Land Disposal Restrictions for Mercury-Containing Wastes	87
III.6. Essential components of landfill	93
III.7. The nature of the State of Qatar	96
III.7.1. Location	96
III.7.2. Area and population	96
III.7.3. Land use	99
III.7.4. Soil classification in Qatar	101
III.7.5. Climatic Conditions in Qatar	102
III.7.5.1. Surface air temperature	104
III.7.5.2. Surface wind	108
III.7.5.3. Relative humidity (R.H.)	114
III.7.5.4. Rainfall	115
III.7.5.5. Evaporation	118
III.7.6. Water resources	118
III.7.6.1. Water withdrawal	124
III.8. Design details of hazardous waste	125
III.8.1. Expected waste input	125

III.8.2. Size and shape of landfill class I	127
III.8.3. Waste disposal/compaction/daily coverage	129
III.8.4. Outer landfill border	130
III.8.5. Leachate	131
III.8.6. Surface water	132
III.8.7. Gas wells and gas outlets	133
III.9. Site selection of the landfill in Qatar	
III.9.1. Locational criteria	135
III.9.2. Data collection	138
III.10. Site investigation and site characterization	
III.10.1. Subsoil investigation	141
III.10.2. Ground water/hydrogeological investigation	141
III.10.3. Topographical investigation	142
III.10.4. Hydrological investigation	142
III.10.5. Geological investigation and seismic Investigation	143
III.10.6. Environmental investigation	143
III.10.7. Traffic investigation	144
III.10.8. Waste characterization	145
III.10.9. Leachate investigation	145
III.10.10. Conclusion	145
References	146

List of Tables

Table		Page
1	Natural gas specification	2
2	Regional average level of mercury in natural gas	6
3	Feed natural gas specification	44
4	Chemicals used in the study	45
5	Physical properties of adsorbent	56
6	Chemical properties of fresh and spent adsorbent:	57
7	Mercury removal after mineral acid and KI/I ₂ treatment for spent adsorbent	61
8	Mercury removal after thermal treatment of spent adsorbent	69
9	Typical liner materials used in landfill liner systems	68
10	Maximum wind speed in knots	111

List of Figures

Figures		Page
1	The Mercury Cycle	16
2	ICP-MS	49
3	X-ray fluorescence	50
4	X-ray diffraction	51
5	X-ray diffraction of the fresh adsorbent	57
6	Changes in adsorbent and solution mercury concentrations of granular spent adsorbent after acid treatment.	59
7	Changes in adsorbent and solution mercury concentrations of powder spent adsorbent after acid treatment.	59
8	Mercury removal by acid treatment of powder and	60
9	granular spent adsorbents. Changes in adsorbent and solution mercury concentrations of granular spent adsorbent after	62
10	stepwise stirring with iodide/iodine reagent. Changes in adsorbent and solution mercury concentrations of granular spent adsorbent after ultrasonication with of iodide/iodine reagent.	63
11	Mercury removal by ultrasonic leaching and stepwise stirring of granular spent adsorbent with iodide/iodine treatment	65
12	Changes in adsorbed and removed mercury concentrations of granular spent adsorbent after direct heating treatment.	66
13	Changes in adsorbed and removed mercury concentrations of powder spent adsorbent after direct heating treatment.	67
14	Mercury removal by direct dry heating of powdered and granular spent adsorbent.	67
15	X-ray fluorescence spectra of the spent mercury	70
16	adsorbent: (A) before; and (B) after thermal treatment. Flow chart for a modern landfilling system (redrawn from Colombo et al., 1996)	92

17	Single Composite Liner Landfill Containment System	95
18	Double Composite Liner Landfill Containment System	95
19	Map of the State of Qatar	97
20	Satellite map of Qatar	98
21	Topography of Qatar	98
22	Temperature map of Qatar	106
23	Wind direction in Qatar	109
24	Wind rose in Qatar	113
25	Rainfall in Qatar	116
26	Represents the depth to water contour map of Dammam aquifer for the year 1984.	121
27	Water potentiometric surface contour map of Dammam aquifer for the year 1984.	123
28	Landfill class I; schematic cross section landfill	127
29	Landfill class I; base liner system	128
30	Landfill class 1; junction base liner – top liner, incl. anchorage. class I	128
31	Landfill class I; disposal philosophy	130
32	Landfill class 1; outer border	131
33	Landfill class I; drainage and leakage control	132

Abstract

Chemical and physical treatment methods are described for mercury removal from spent adsorbent used to purify the natural gas before using in the methanol industry in Qatar. The physical treatment is based on thermal treatment of the waste by heating at temperatures above 400°C. Whereas treatment with strong mineral acids proves unsatisfactory (maximum mercury removal 21 %), iodine/ iodide solution (0.08M KI/ 0.01M I₂) leaches 83 % of the waste mercury content. Heating up to 400°C for four hours quantitatively removes the adsorbed mercury. The results show that the spent adsorbent contains about 1.5 ppm mercury.

A suitable location for disposal the solid waste in Qatar was investigated. From detailed Environmental Impact Assessment (EIA) studies by examining the nature of soil, underground water and climate as well as different maps of Qatar, we found that Umm Said is the best choice as a safe location of a hazardous landfill.