AMYLIN AND ITS RELATION TO INSULIN AND LIPID PROFILE IN OBESE CHILDREN BEFORE AND AFTER WEIGHT LOSS

Thesis

Submitted for Partial Fulfillment of Master Degree In Pediatrics

By

Zeinab Mohammed Montaser Mohammed

(M.B. B.Ch) – Cairo University

Under supervision

Prof. Dr. / Omnia Fathy El-Rasheidy

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. / Dina Ahmed Amin

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. / Hala Abdel Al Ahmed

Lecturer of Clinical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2010

Acknowledgement

First and foremost, all thanks and praises are due to **ALLAH**, most gracious, most merciful, who granted me the ability to accomplish this work.

Words can never express my deepest gratitude and sincere appreciation to **Prof. Dr. Omnia Fathy El-Rasheidy**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her valuable guidance, extreme patience, kind advice and constructive opinions. I really had the honor of having her supervise for this work.

My deepest heartily thanks appreciation and sincerest gratitude to **Dr. Dina Ahmed Amin**, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, who spared no time and effort to provide me with her valuable instructions and expert touches. I will always owe her so much for guiding and helping me.

My everlasting gratitude to **Dr. Hala Abdel Al Ahmed,** Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her great help and continuous guidance. Her extreme careful supervision and precise advices are more that I can express.

I would like to thank the staff of 6 October Hospital, especially **Dr. Abed Amin Shehata**, Consultant of Pediatrics, 6 October Hospital, Health Insurance Organization, I appreciate his kind support and the effort he exerted to help me.

I am indebted to every patient included in this study and also their parents for their cooperation and their trust. I wish them all the best of health and happiness.

I would like also to express my gratitude to my colleagues who help me; I wish them all the success in their life.

Finally, my truthful affection and love to my parents, my brothers and my sister who were, and will always be, by my side, all my life.

List of Contents

	Page
List of abbreviations	i
List of tables	vi
List of figures	viii
Introduction	1
Aim of the work	2
Review of literature:	
Obesity	3
Insulin Resistance and Dyslipidemia	60
Amylin	80
Subjects and methods	
Results	108
Discussion	141
Summary	
Conclusion	159
Recommendations	160
References	161
Appendices	205
Arabic summary	

List of Abbreviations

ABCA1 ATP-binding cassette A1
ACRP30.... Adipocyte Complement Related Protein of 30 kD

AgRP Agouti gene related protein

AMY Amylin

AN..... Acanthosis nigricans

ASIP..... Agouti-Signaling protein

BBSBardet-Biedl syndrome

BMI.....Body mass index

BP.....Blood pressure

CCK.....Cholecystokinin

CDC......Centers for Disease Control and Prevention

CETP......Cholesteryl ester transfer protein

cGMP......Cyclic guanosine monophosphate

CGRP Calcitonin gene related peptide

CholCholesterol

CL–RAMP Calcitonin receptor-like receptor/ receptor activity-modifying protein

CMI Comprehensive multidisciplinary intervention

COOH Carboxyl group

C-peptide... Connecting peptide

CRP C-reactive protein

CT Calcitonin

DHEA-S..... Dehydroepiandrosterone-sulfate

DRG......Diagnosis-related group

EDTA...... Ethylenediaminetetraacetic acid **ELISA**...... Enzyme-linked immunosorbent assay **EMCL**..... Extramyocellular lipid **FA** Fatty acid **FDA** Food and Drug Administration **FDA** Food and Drug Administration **FFA**.....Free fatty acid FGIR..... Fasting glucose/insulin ratio **FPG**.....Fasting plasma glucose **FSH**.....Follicle-stimulating hormone GIGlycemic index **G-protein**...Guanine nucleotide-binding protein **GRD**......Glycoregulation disorders **GSK-3**...... Glycogen synthase kinase 3 **HDL**......High-density lipoprotein **HEK-293** ... Human embryonic kidney 293 **HL**.....Hepatic lipase **HOMA**...... Homeostatic model assessment **HSP-70**..... Heat shock protein 70 **HSPGs** Heparan sulfate proteoglycans **IAPP** Islet amyloid polypeptide **IDF**.....International Diabetes Federation **IFG**.....Impaired fasting glycemia IGF-I..... Insulin growth factor 1 **IGT** Impaired glucose tolerance

IMCL.....Intramyocellular lipid IOM Institute of Medicine **IR** Insulin Resistance **ISI**Insulin sensitivity index **L-364718**.... CCK antagonist **LCAT**.....Lecithin:cholesterol acyltransferase **LC-CoA** Long-chain fatty acyl-CoA **LDL**Low-density lipoprotein **LDLR**......Low-density lipoprotein receptor **LH**.....Luteinizing hormone **LPL**.....Lipoprotein lipase **LRP**.....LDLR-related protein **LRP**.....LDLR-related protein MC3R Melanocortin receptor-3 MC4R Melanocortin 4 Receptor **MRI** Magnetic Resonance Imaging mRNA...... Messenger ribonucleic acid MS Metabolic syndrome MTP..... Microsomal triglyceride protein **MUP**.....4-Methylumbelliferyl Phosphate NCEP/ATP III The third report of the National Cholesterol **Education Program Adult Treatment Panel NEFA**...... Nonesterified fatty acids NHANES... National Health and Nutrition Examination Study NIBSC National Institute for Biological Standards and Control

NIDDM..... Non insulin dependent diabetes mellitus

NPY Neuropeptide Y

OGTT Oral glucose tolerance test

OSA Obstructive sleep apnea

PCOS...... Polycystic ovary syndrome

POMC Pro-Opiomelanocortin

PSMF...... Protein-sparing modified fast

PWS.....Prader-Willi syndrome

PYY Peptide YY

QUIKI Quantitative insulin sensitivity check index

RAMP...... Receptor activity modifying protein

RERRough endoplasmic reticulum

sCT8-32 Salmon calcitonin 8-32

SD..... Standard deviation

SER.....Smooth endoplasmic reticulum

SES..... Socioeconomic status

SFA Saturated fatty acids

SI.....Insulin sensitivity index

SPSS.....Statistical Package for Special Science

SR-BI......Scavenger receptor class B, type I

SWM...... Structured weight management

T2DM Type 2 diabetes mellitus

T3.....Triiodothyronine

T4.....Thyroxine

TBF.....Total body fat

TC Total cholesterol

TCI.....Tertiary care intervention

TG.....Triglycerides

TNF..... Tissue necrotizing factor

TRLs.....Triglyceride-rich lipoproteins

TSH.....Thyroid-stimulating hormone

USDA...... United states Department of Agriculture

VLDL...... Very low-density lipoprotein

VMH...... Ventromdial hypothalamus

WC..... Waist circumference

WHO World Health Organization

WLIP...... Weight loss intervention program

α-MSH......α-melanocyte stimulating hormone

List of Tables

Table	Page
Table (1):	The IDF consensus definition of metabolic syndrome in children and adolescents79
Table (2):	Age in the two studied groups108
Table (3):	Sex distribution in the two studied groups108
Table (4):	Socioeconomic status in the two studied groups
Table (5):	Parental obesity in the two studied groups110
Table (6):	Family history in the two studied groups111
Table (7):	Total caloric intake and energy obtained from fats, CHO and proteins in the two studied groups
Table (8):	Practicing regular sport in obese patients before WLIP compared to controls113
Table (9):	Practicing regular sport in obese patients before and after WLIP113
Table (10):	Practicing regular sport in obese patients after WLIP compared to controls114
Table (11):	Anthropometric measurements in obese patients before obesity WLIP compared to controls
` '	Anthropometric measurements in obese patients before and after WLIP 118

Table (13):	Anthropometric measurements in obese patients after WLIP compared to controls120
Table (14):	Lipid profile in obese patients before WLIP compared to controls
Table (15):	Lipid profile in obese patients before and after WLIP
Table (16):	Lipid profile in obese patients after WLIP compared to controls
Table (17):	Fasting glucose, fasting and postprandial insulin and HOMA in obese patients before WLIP compared to controls
Table (18):	Fasting glucose, fasting and postprandial insulin and HOMA in obese patients before and after WLIP
Table (19):	Fasting glucose, fasting and postprandial insulin and HOMA in obese patients after WLIP compared to controls
Table (20):	Fasting and postprandial amylin levels in obese patients before WLIP compared to controls
Table (21):	Fasting and postprandial amylin levels in obese patients before and after WLIP133
Table (22):	Fasting and postprandial amylin levels in obese patients after WLIP compared to controls
Appendix (2	2): 24h recall206

List of Figures

Figure		Page
Figure (1):	Diagnostic algorithm for childhood obesity	18
Figure (2):	Suggested staged treatment for 2- to 5-year-old children	57
Figure (3):	Staged treatment for 6- to 11-year-old youth	58
Figure (4):	Staged treatment for 12- to 18-year-old youth	59
Figure (5):	Insulin signals the intake of nutrients and acts as measure of energy stores in the adipose tissue	62
Figure (6):	Metabolism of fasting and postprandial TRLs	72
Figure (7):	HDL metabolism	73
Figure (8):	Pathogenesis of dyslipidemia in obesity. Central role of fasting and postprandial TRLs	74
Figure (9):	One of our obese patients with acanthosis negricans	98
Figure (10):	Shows that 50% of obese patients have acanthosis negricans, 65% have snoring and 40% have striae.	115

Figure (11):	Anthropometric measurements in obese patients before WLIP compared to controls
	117
Figure (12):	Anthropometric measurements in obese patients before and after WLIP119
Figure (13):	Anthropometric measurements in obese patients after WLIP compared to controls121
Figure (14):	Fasting insulin in obese patients before and after WLIP compared to controls128
Figure (15):	HOMA in obese patients before and after WLIP compared to controls129
Figure (16):	Fasting insulin in obese patients before and after WLIP
Figure (17):	HOMA in obese patients before and after WLIP
Figure (18):	Fasting amylin levels in obese patients before and after WLIP compared to controls
Figure (19):	Postprandial amylin levels in obese patients before and after WLIP compared to controls
Figure (20):	Fasting amylin levels in obese patients before and after WLIP
Figure (21):	Postprandial amylin levels in obese patients before and after WLIP137

Figure (22):	Correlation between fasting amylin and fasting insulin levels	.138
Figure (23):	Correlation between fasting amylin and HOMA	.139
Figure (24):	Correlation between rate of change of amylin and rate of change of insulin	.140
Appendix	(1): Park and Park socioeconomic classification	.205

Introduction

Childhood obesity has reached epidemic levels in developed countries. Twenty five percent of children in the United States are overweight and 11% are obese (*Whitaker et al., 1997*). The frequency of obesity continues to rise in our country; *Salem et al.* (2002) reported that the prevalence of obesity was 14.7%-15.08% for male and female children adolescents.

Obesity is the most common cause of insulin resistance. Insulin resistance is the keystone of the "Metabolic syndrome" a major cardiovascular risk factor even in the absence of demonstrable glucose intolerance or diabetes (*Bouchard*, 2004). Moreover, it is associated with abnormal levels of blood lipids (*Pi-Sunyer*, 1993).

Amylin, also known as islet amyloid peptide, identified in 1987, is a naturally occurring hormone, released by the B cells of the pancreas and consists of 37 amino acids. It seems to decrease food intake through both central and peripheral mechanisms (*Reda et al.*, 2002).

A role for amylin has been suggested in the pathogenesis of dyslipidemia and impaired glucose metabolism. Moreover, amylin can reduce chylomicron uptake, most probably by regulating lipoprotein receptors either directly or via modulation of insulin activity (*Smith and Mamo*, 2000).