

Ain Shams University
Faculty of Engineering
Structural Engineering Department

Evaluation of the Effective Buckling Length of

Columns in Structural Steel Frames

By

Mohamed Elsayed Osman Abdelkhalek

B.Sc. 2005 Civil Engineering (Structural Division) Structural Engineering Department Ain Shams University

Thesis Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Civil Engineering (structural)

Supervised by

Prof. Dr. Adel Helmy Salem

Professor, Structural Engineering Department Ain Shams University

Prof. Dr. Mohamed Abdel-Kader El-Aghoury

Professor, Structural Engineering Department Ain Shams University

Cairo, Egypt 2016

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Structural Engineering Department

Researcher name:	Signature
Mohamed Elsayed Osman Abdelkhalek	
Thesis Title	
Evaluation of the Effective Buckling Length of Steel Frames	Columns in Structural
Supervisors	
Prof. Dr. Adel H. Salem Professor, Structural Engineering Department Ain Shams University	
Prof. Dr. Mohamed El Aghoury Professor, Structural Engineering Department Ain Shams University	

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Structural Engineering Department

Researcher name:	Signature
Mohamed Elsayed Osman Abdelkhalek	
Thesis Title	
Evaluation of the Effective Buckling Length of	Columns in Structural
Steel Frames	
Referee Committee	
Prof. Dr. Mohamed Ibrahim El-Naggar Professor, Civil Engineering Department Alexandria University	
Prof. Dr. Ahmed Abdel-Salam El-Serwy Professor, Structural Engineering Department Ain Shams University	
Prof. Dr. Adel Helmy Salem Professor, Structural Engineering Department Ain Shams University	
Prof. Dr. Mohamed El-Aghoury Professor, Structural Engineering Department Ain Shams University	

Statement

Disclaimer

This thesis is submitted in partial fulfillment of the requirements for the degree of

Master of Science in Civil Engineering (structural), Faculty of Engineering, Ain Shams

University.

The work included in this thesis was carried out by the author during the period from

2013 to 2016, and no part of it has been submitted for a degree or qualification at any

other university or institute.

The candidate confirms that the work submitted is his own and that appropriate

credit has been given where reference has been made to the work of others.

Student Name

Mohamed Elsayed Osman Abdelkhalek

Signature

Date: 18 April 2016

ACKNOWLEDGEMENT

Praise and all thanks be to Allah, thank you god for giving me the opportunity to learn and work in a subject that I liked. Thank you god for showing me the path of how to do the work. Thank you god for granting me the time, the effort, the people who helped me to succeed in reaching an objective through years.

Acknowledgement and appreciation to my supervisors who taught me more than science. It was a dream to me to learn something from Prof. Dr. Adel Salem since I was still in the undergraduate studies, the opportunity came when I knew that he teaches a subject in the post graduate studies. During this course I decided to have my thesis in the same subject "Stability analysis". He also taught me the real meaning to be modest, many appreciations for his reviews and guidance. Thanks to Prof. Dr. Mohamed El Aghoury who supported my point of view providing more knowledge to develop that point and gave me a lot of confidence that I can do something. It was very useful to work with his reviews and guidance throughout the thesis and thanks to his efforts in giving ideas that opened many paths in the study.

Special thanks to Dr. Ihab M. El Aghoury, although his name is not written as one of the supervisors, but huge support and time were spent by him throughout the work in this study, helping in new techniques and suggesting new paths and assisting in many aspects.

Great thanks and gratitude to my family, my parents who never let me down and encouraged me in whole my life, my wife who was patient and gave me the privilege of time to work in healthy environment and my kids who inspired me with the meaning of doing infinity trials till success.

Thanks to all professors and staff in the structural department in Ain Shams University for contributing in building my knowledge and skills in many ways of life.

TABLE OF CONTENTS

Table of Contents	. I
List of FiguresI	V
List of TablesI	X
NOMENCLATURE	. 1
Abstract	.3
1 Introduction	. 5
1.1 General introduction	5
1.2 Objectives	6
1.3 Types of buckling	. 7
1.4 Thesis outline and contents	9
2 Literature review	.2
2.1 Historical background for the stability	12
2.2 Previous Studies	13
2.3 Methods of K-factor evaluation	16
2.3.1 Direct method	16
2.3.2 Alignment Charts	23
2.3.3 Finite Element Analysis FEA	27
2.4 Theory of Multiples	29

2.5	Using Stability functions in unsymmetrical frame	30
3 Pa	rametric study	33
3.1	Involved Parameters	33
3.1	1.1 Bending Stiffness ratio	33
3.1	1.2 Number of stories (N)	33
3.1	1.3 Column bases	33
3.1	1.4 Sidesway Permission	33
3.2	Frame Families and Loading Patterns	34
3.3	Deviation Definition	38
3.4	Results of the "Direct method" using stability functions	39
3.5	Results of the Finite element analysis	48
3.6	Results of the Alignment charts with theoretical values	61
3.7	Results of the Alignment charts with code recommended values	72
4 Inf	fluence of Variable Column Load patterns and Bases on t	he
buckling	g loads of Frames	84
4.1	Influence of variable applied column loads on the critical sum of buckl	ing
loads (s	way permitted or prevented cases)	84
4.2	Effect of different bases on the critical buckling load	97
4.3	Single story frame having 3 columns with the same moment of inertia1	.09
4.4	Special Load patterns frames of family "A" and "B"1	13

5 Pi	tched roof frames
5.1	K-factor values for Pitched roof frames without crane loads115
5.2	K-factor values for Pitched roof frames with crane loads
5.3	Using stiffness method for the single-story frames
6 A _l	oplications on different frames
6.1	Example 1: 2 bay, single story frame
6.2	Example 2: Single Bay, Single story frame
7 Co	onclusions
7.1	Summary
7.2	Conclusions
7.3	Proposed subjects for future research
Refer	ences
Appe	ndices176
App	endix A. Samples of evaluating the K-factor by using the direct method 176
App	endix B. Samples of evaluating the K-factor by using FEM
Arabi	c abstract of the thesis