FRONTOLATERAL CRANIOTOMY THROUGH A SUPRACILIARY SKIN INCISION FOR ANTERIOR SKULL BASE AND SELLAR LESIONS

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Neurosurgery

M.B., B.Ch. M. Sc. General Surgery Benha Faculty of Medicine Benha University

Supervisors

PROF. DR.

HOSSAM MOHAMED EL HUSSEINY

Prof. & Head of Neurosurgery Department
Faculty of medicine
Ain Shams University

PROF. DR.

FATHY HUSSEIN EL-NOSS

Prof. & Head of Neurosurgery Department
Faculty of Medicine
Benha University

PROF. DR.

HISHAM ABD AL- SALAM SIMRY

Prof. of Neurosurgery Faculty of medicine Ain Shams University PROF. DR

HAZEM AHMED MOSTAFA

Assistant Prof. of Neurosurgery Faculty of Medicine Ain Shams University

AIN SHAMS UNIVERSITY

2010

التدخل الأمامي الجانبي عن طريق فتح فوق الحاجب لمنطقة الحفرة الأمامية لقاع الجمجمة ومنطقة السرج التركى

رسالة

مقدمة من الطبيب / وليد محمد عبد الوهاب عبد الرحمن ماجستير الجراحة العامة كلية الطب – جامعة بنها

توطئة للحصول على درجة الدكتوراه في جراحة المخ والأعصاب

المشرفون

الأستاذ الدكتور فتحى حسين النص

أستاذ ورئيس قسم جراحة المخ والأعصاب كلية الطب - جامعة بنها

الأستاذ الدكتور حسام محمد الحسيني

أستاذ ورئيس قسم جراحة المخ والأعصاب كلية الطب – جامعة عين شمس

الأستاذ الدكتور حازم أحمد مصطفى

أستاذ م. جراحة المخ والأعصاب كلية الطب - جامعة عين شمس الأستاذ الدكتور هشام عبد السلام سمري

أستاذ جراحة المخ والأعصاب كلية الطب - جامعة عين شمس

جامعة عين شمس

7.1.

بِسْهِ اللّهِ الرَّحْمَنِ الرَّحِيمِ

[قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم]

حدق الله العظيم سورة البقرة الآية ٣٢

ACKNOWLEDGMENT

First and foremost, thanks to GOD, the Most Beneficent and Most Merciful.

Deepest gratitude and appreciation are cordially due to the distinguished **PROF.DR**, **HOSSAM EL HUSSEINY**, Professor and head of Neurosurgery, department Faculty of Medicine, Ain Shams University, for kindly accepting to supervise my thesis. His wise council, valuable instructions and endless support will always be engraved in my memory.

I am greatly indebted and honored to work under the supervision of the knowledgeable **PROF. DR. FATHY HUSSEIN EL-NOSS,** Professor and head of Neurosurgery department, Faculty of Medicine, Benha University, whom I am very fortunate to be one of his students. His creative ideas, expanded experience and willingness to teach, have pushed me forwards throughout every step of my research.

No words can express the magnitude of appreciation and respect I carry to the eminent **PROF. DR. HISHAM ABD ALSALAM SIMRY**, Professor of Neurosurgery Faculty of Medicine, Ain Shams University, who meticulously revised every minor detail in this study with concern and enthusiasm and with a lot of valuable time. It has been a valuable chance to work under his guidance.

I am deeply grateful to **PROF. DR.** Hazem Ahmad Mostafa, Assistant Professor of Neurosurgery, Faculty of Medicine, Ain Shams University for his most valuable advises and support all through the whole work and for dedicating much of his precious time to accomplish this work.

CONTENTS

Title	Pages
Abstract	
Introduction	1
Review of literature	4
o Chapter I: ANATOMY	4
o Chapter II: PATHOLOGY	29
o Chapter III: CLINICAL PRESENTATION	47
o Chapter IV: INVESTIGATIONS	55
o Chapter V: Frontolateral keyhole craniotomy	79
through a supraciliary skin incision	
(Lateral supraorbital approach)	
Patients and Methods	96
Results and analysis	102
Cases presentation	124
Discussion	136
Summary and conclusion	150
References	153
Arabic summary	

LIST OF FIGURES

No	Content	Page
1	Muscles of the eyebrows (37).	4
2	Coronal section showing the various layers	7
	in the temple (37).	
3	Supra-orbital nerve and artery (37).	9
4	Front of the skull and face (37).	10
5	Temporal fossa (83).	13
6	The orbit, anterior view (85).	13
7	Endocrinal Surface of the anterior cranial	14
	base and the sella (83).	
8	Dural Relationships (37).	18
9	Orbital surface of the frontal lobe (82).	19
10	Pituitary gland and stalk (84).	21
11	Cavernous sinus region (84)	21
12	Arteries at the base of the brain (111).	24
13	Veins at the frontal base and sellar region	25
	(82).	
14	Cranial nerves in the sellar region (84).	28
15	Axial non-contrast C.T showing hyperdense	56
	pituitary apoplexy .	
16	Axial non-contrast C.T showing calcified	57
	craniopharyngioma (21).	
17	Axial CT with bone window showing clival	58
	chordoma with bone destruction (31).	
18	Non contrast CT showing hypodense left	59
	frontal epidermoid insinuating into the	
	interhemisheric fissure (3).	
19	Non contrast CT showing suprasellar	60
	arachnoid cyst (3).	
20	Post contrast CT showing 2 brain abscesses	61
	with central hypodensity and peripheral ring	
	enhancement.	

21	Non contrast CT showing cisternal	62
	hyperdensity in SAH (55).	
22	A coronal unenhanced T1WI shows a small	65
	left sided microadenoma (arrow) as an area	
	of lower signal than the rest of the anterior	
	pituitary tissue (33).	
23	Coronal T2 image showing a heterogeneous	66
	appearance with solid and cystic	
	components. The low signal on T2 (arrow)	
	corresponds to a calcified focus.	
24	Meningioma:contrast-enhanced, sagittal	67
	T1WI shows a uniformly enhancing mass	
	arising from the planum sphenoidale (77).	
25	Optic pathway glioma. Contrast-enhanced,	67
	axial, T1WI shows an enhancing mass in	
	the suprasellar region that extends	
	osteriorly along the optic tracts (arrow) (77).	
26	Rathke's cleft cyst. Contrast-enhanced	70
	sagittal.	
27	Sarcoidosis. Contrast-enhanced, coronal	72
	T1WI shows intense, nodular enhancement	
	of the leptomeninges and in the right	
	temporal lobe (77).	
28	AcomA aneurysm (19).	74
29	Schematic drawing presenting the three	85
	important steps of head positioning. (79)	
30	The stepwise development of supraorbital	88
	approach. Note the reduction in size of the	
	skin incision and craniotomy. (79).	
31	Cadaveric dissection showing the steps of	89
	the approach (79).	
32	Operative photo after CSF drainage (92).	90
33	Steps of the closing procedure (23).	91
34	Craniotomy for trans-supraorbital approach	94

	(76).	
35	Axial MRI T1 with contrast (case 1)	125
36	Coronal MRI T1 with contrast (case 1)	125
37	Sagittal MRI T1 with contrast (case 1)	126
38	Intraoperative Photos showing the size of	126
	craniotomy (case 1)	
39	Skin incision (case 1)	126
40	Postoperative X-ray sowing craniotomy	127
	(case 1)	
41	Histopathological picture (case 1)	127
42	Axial MRI T1WI with contrast (case 2)	129
43	Axial MRI T2 WI (case 2)	129
44	Coronal MRI T1 WI with contrast (case 2)	129
45	Coronal T2WI showing Mixed hyperintense	131
	(hemorrhage) and isointense lesion (case 3)	
46	Postcontrast Coronal T1WI one year after	131
	the operation (case 3)	
47	Sagittal MRI with contrast (case 3)	131
48	CT brain with contrast showing	133
	homogenous enhancement (case 4)	
49	MRA showing circle of Willis displaced	133
	backwards by the lesion (case 4)	
50	Axial MRI T1W images (case 4)	134
51	Coronal MRI T1W images (case 4)	134
52	Sagittal MRI T1W images (case 4)	134
53	CT brain (1 st Postoperative week) showing	135
	total tumor removal with smallpostoperative	
	haematoma (case 4)	

LIST OF TABLES

No	Content	Page
1	Description Age and sex in this study (A-B)	102
2	Duration of symptoms in months (A-B)	103
3	Symptoms distribution	103
4	Signs distribution	104
5	Summary of different radiological extension	105
6	Description of size	106
7	Different intraoperative attachment	107
8	Extent of excision	108
9	Duration of follow up in months	110
10	Postoperative complications	112
11	Outcome	112
12	Size and excision	115
13	Extension and excision	116
14	Attachment and excision	117
15	Pathology and excision	118
16	Nature of the lesion and excision	119
17	Pathology and outcome	120
18	Duration and outcome	121
19	Excision and outcome	122

LIST OF CHARTS

No	Content	Page
1	Age and sex distribution	102
2	Symptoms distribution	104
3	Signs distribution	104
4	Radiological extension	105
5	Different intraoperative attachment	108
6	Extent of surgical excision	108
7	Outcome in this study	113
8	Size and excision	115
9	Extension and excision	116
10	Attachment and excision	117
11	Pathology and excision	118
12	Nature of the lesion and excision	119
13	Pathology and outcome	120
14	Duration and outcome	121
15	Excision and outcome	122

LIST OF ABBREVIATIONS

<: less than

>: more than

1ry: primary

2ry: secondary

2nd: second

3rd: third

4th: fourth

5th: fifth

6th: sixth

A1: first part of the anterior cerebral artery

A2: second part of the anterior cerebral artery

ACA: anterior cerebral artery

A-COM: anterior communicating artery

ACTH: Adrenocorticotropic hormone

ADH: anti diuretic hormone

AICA: anterior inferior cerebellar artery

AP: anteroposterior

AVM: arteriovenous malformation

BA: basilar artery

BBB: blood brain barrier

CNS: central nervous system

Cm: centimeter

CRH: corticotrophin releasing hormone

CS: cavernous sinus

CSF: cerebro-spinal fluid

CT: computerized tomography

CTA: CT-angiography

FSH: follicle-stimulating hormone

GH: growth hormone

GHRH: growth hormone releasing hormone

GNRH: gonadotropin releasing hormone

ICA: internal carotid artery

ICP: intracranial pressure

LH: lutinizing hormone

M1: first part of the middle cerebral artery

M2: second part of the middle cerebral artery

M3: third part of the middle cerebral artery

MCA: middle cerebral artery

mm: millimeter

MRA: magnetic resonance angiography

MRS: magnetic resonance spectroscopy

PCA: Posterior cerebral artery

Pcom: posterior communicating artery

PRL: prolactin

SAH: subarachnoid hemorrhage

SPSS: Statistical package of social sciences

SD: Standard deviation

SCA: Superior cerebellar artery

T.B: tuberculosis

T1W1: T1-weighted image

T2W1: T2-weighted image

U/S: ultrasound

VS: versus

WHO: World Health Organization

ABSTRACT

Background: Many approaches were recommended for surgical treatment of lesions of the anterior cranial fossa and around the sella; frontal, bifrontal, frontotemporal, and frontolateral craniotomies are the most frequently used approaches. An alternative approach is the frontolateral craniotomy through eyebrow skin incision.

Objectives and aim of the work: This study evaluates the techchnique, indications, limitations, advantages and disadvantages of the frontolateral craniotomy through an eyebrow skin incision.

Patients and methods: Twenty patients with different lesions in the anterior cranial fossa and around the sella were studied clinically and radiologically and treated by this minimally invasive technique. The technique is described in details. The postoperative outcome is evaluated with casting light on the specific parameters related to the aforementioned approach.

Conclusion: The frontolateral keyhole craniotomy is a minimally invasive cosmetic approach that provides excellent exposure to a variety of intracranial lesions. This approach cannot be used for all anterior cranial fossa and sellar pathologies, but is recommended for many lesions at the frontal base and sellar region.

Keywords: Supraorbital Keyhole approach, eyebrow incision, minimally invasive skull base surgery, Preoperative planning,

INTRODUCTION

At the beginning of neurosurgical history, surgical treatment of intracranial lesions was always related to large craniotomies. These extended approaches was necessary for several reasons: poorly developed diagnostic techniques; inaccurate localization of the lesions, the craniotomy had to be large enough to find the lesion and to allow investigation of deep-seated areas, the allowable methods of illumination were unsophisticated, and the instruments at that time were not designed for neurosurgery but for general surgery. In addition, operating teams consisted of at least three surgeons; thus, six hands and the large instruments that they held obscured the surgical field (102).

However, in recent decades, the discovery of fundamental anatomic and physiological principles and the improvement of intraoperative visualization by the operating microscope, together with refined instrumentation, allowed the evolution of microneurosurgical techniques, which together with the enormous development of preoperative and intraoperative diagnostic facilities enabled neurosurgeons to treat more complicated neurosurgical diseases through smaller and more specific approaches to achieve the greatest therapeutic effect while causing the least introgenic injury (79).

Concurrently, new noninvasive therapeutic options such as radiosurgery (cobalt60 systems (Gamma Knife) linear accelerator (LINAC) systems and proton beam therapy) are becoming available to patients with brain tumors. These challenges have motivated neurosurgeon to develop less invasive techniques that minimize iatrogenic injury and patient discomfort.

History of the Subfrontal Approaches

A subfrontal and transfrontal approach was first described by Francesco Durante in 1884 for resection of an olfactory groove meningioma; the postoperative course was uneventful, the patient experienced no neurological deficits (102).

The first supraorbital subfrontal exposure was reported by Fedor Kraus in the first volume of his pioneering work, *Surgery of the Brain and Spine*. Kraus created a combined skin, periosteum, and bone flap to avoid postoperative bone infection (52). Tandler and Ranzi approached this area by a similar exposure for suprasellar lesions (100).

Although the craniotomy was large, Krause and Tandler and Ranzi used an extradural route; the frontal, parietal, and temporal portions of the cortex were not exposed directly to air, as the dura was opened at the sphenoid ridge (52), (100).

McArthur removed the supraorbital arch in his frontal approach to the pituitary body, reducing postoperative complications owing to excessive retraction of the frontal lobe (62).

Harvey Cushing performed the first complete removal of a tuberculum sellae meningioma via subfrontal exposure in 1916 and reported his experiences on the resection of 28 tumors in his classic publication, coauthored by Louise Eisenhardt (22).

Heuer and Dandy made the first frontolateral approach to the optic chiasm and pituitary gland. (41) .The authors exposed a large cortical surface, causing cortical microinjuries with the possibility of subsequent postoperative epileptic seizures. One decade later, approaching the