Minimally Invasive Coronary Artery Bypass Grafting (MIS CABG)

Essay

Submitted for Partial Fulfillment of MS Degree in Cardiothoracic Surgery

By

Wael Mobkhat Yafes

M.B.B.CH

Supervisors

Prof. Dr. Mohamed Ayman Shoaeb

Professor of Cardiothoracic Surgery
Faculty of Medicine- Ain Shams University

Dr. Saaed Refaat El-Asy

Assistant Professor of General Surgery Faculty of Medicine- Ain Shams University

Dr. Hamdy Abd El-Wareth Sengab

Lecturer of General Surgery
Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain Shams University
2014

عمليات ترقيع الشرايين التاجية من خللال فتحة صغيرة بالصدر

رسالة

توطئة للمصول على ورجة الماجستير في جراحة القلب والصرر

مقرمه من طبیب / وائسل مبخست یافسس بکالوریوس الطب و الجراحة

تت إشران الأستاذ الدكتور/ محمـد أيمـن شعيـب

> أستاذ جراحة القلب والصدر كلية الطب- جامعة عين شمس

الدكتور/ سعيد رفعت العاصي

أستاذ مساعد جراحة القلب والصدر كلية الطب- جامعة عين شمس

الدكتور / حمدى عبد السوارث

مدرس جراحة القلب والصدر كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٤

270 my father

2 70 my mother

270 my Sisters

2 70 my Lovely wife

I dedicate this work.

Wael Mobkhat Yafes

Acknowledgement

First, thanks are all due to **GOD** for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof. Dr. Tamer Mansour Ayed,** Professor of Cardiothoracic Surgery, and head of department at El-Galaa Family Military Hospital for his great support and advice, his valuable remarks that gave me the confidence and encouragement to fulfill this work, without whom I would have known nothing about minimal invasive cardiac surgery.

I am also grateful to **my lovely wife** hoping that I forever make you proud.

I would like to express my deepest gratitude and sincere appreciation to **my fighting Family** who brought me up this way despite all the hard circumstances.

Contents

S	Subjects Page		
•	List of Abbreviations	I	
•	List of Figures	III	
•	Historical Perspective	1	
•	Introduction	3	
•	Advantages	7	
•	Disadvantages	11	
•	Minimally Invasive Direct Coronary Artery	Bypass	
	(MIDCAB)	13	
•	Partial Sternotomy	34	
•	Endoscopic (ENDOCAB) and Robotic	Totally	
	Endoscopic CABG (TECAB)	39	
	- Endoscopic Coronary Artery	Bypass	
	(ENDOCAB)	42	
	- Totally Endoscopic Coronary Artery	Bypass	
	(TECAB)	53	
•	Port Acceess System	65	
•	Minimally Invasive Conduit Harvesting	77	
	- Endoscopic Vein Harvesting (EVH)	78	
	- Endoscopic Radial Artery Harevesting (E	RAH)94	
•	Summary	110	
•	References	117	
•	Arabic Summary		

List of Abbreviations

BTT : Blunt Tip Trocar

CABG: Coronary Artery Bypass Grafting

COPD: Chronic Obstructive Pulmonary Disease

CPB: Cardio Pulmonary Bypass

CTA : Computed Tomography Angiography

EAOBC: EndoAortic Balloon Catheter

ENDOCAB: Endoscopic Coronary Artery Bypass

EVH : Endoscopic Vein Harvesting

FEV1 : Forced Expiratory Volume 1

HCR: Hybrid Revascularization Room

ICS: Inter Costal Space

IOTEE: Intra Operative Trans Esophageal Echo

IJV : Internal Jugular Vein

LAD : Left Anterior Descending Artery

LAST : Left Anterior Small Thoracotomy

LIMA: Left Internal Mammary Artery

LSV : Long Saphenous Vein

MACE : Major Adverse Cardiac Events

MIDCAB: Minimally Invasive Direct Coronary Artery

Bypass

NIWHD: Non Infective Wound Healing Disturbances

OCT : Optical Coherence Tomography
Open Redial Autory Harresting

ORAH: Open Radial Artery Harvesting

OVH : Open Vein Harvesting

PAC : Pulmonary Artery Catheter

SList of Abbreviations &

PDA : Posterior Descending Artery

PLS : Partial Lower Sternotomy

RA : Radial Artery

RCA : Right Coronary Artery

STS ACSD : Soceity of Thoracic Surgerons Adult Cardiac Surgery Database

TECAB : Total Endoscopic Coronary Artery Bypass

TEE : Trans Esophageal Echocardiography

List of figures

Figure	Title	Page
No.		No.
Fig. (1)	Primary anterior MIDCAB	19
	incision: The pedicled left internal	
	thoracic artery is grafted to the	
	left anterior descending coronary	
	artery through a small transverse	
	incision over the left fourth	
	intercostal space.	
Fig. (2)	Dissection of the internal	20
	mammary artery under direct	
	vision except that it is from a	
	mirror-image lateral location.	
Fig. (3)	Two access incisions made at the	21
	6th intercostals space and	
	Subxiphoid for the Stabilizer	
	device and the heart positioner.	
Fig. (4)	Redo antero-lateral MIDCAB	23
	incisions: A free radial artery	
	conduit is grafted from a ramus	
	coronary artery branch to the left	
	subclavian artery.	

Figure No.	Title	Page No.
Fig. (5)	Lateral MIDCAB incision and	27
	stabilized obtuse marginal artery	
	with compression stabilizer.	
Fig. (6)	The lower edge of the sternum	30
	and the costal arch are lifted with	
	Rultract table mounted internal	
	mammary artery (IMA) retractor	
	hooks.	
Fig. (7)	LIMA to LAD done through	35
	Partial Lower Sternotomy.	
Fig.(8)	One pad on the right anterior	43
	chest and the other pad on the left	
	posterolateral chest.	
Fig. (9)	The right arm is tucked alongside	44
	the patient, and the left arm, bent	
	at the elbow.	
Fig. (10)	A 5.5-mm port is inserted in the	46
	fifth intercostal space along the	
	left mid-axillary line. Two	
	additional 5.5-mm ports are then	
	placed for the left and right	
	instruments.	

Figure No.	Title	Page No.
Fig. (11)	An endoscopic view of the	47
	completed LIMA harvest.	
Fig. (12)	A small soft tissue retractor is	49
	placed through the interspace to	
	retract the subcutaneous tissue	
	and muscle without moving the	
	ribs.	
Fig. (13)	The stabilizer and the LIMA	50
	holder are placed through the	
	previous port sites so that the	
	small thoracotomy remains	
	unobstructed.	
Fig. (14)	The anastomosis begins by placing	52
	five sutures around the LIMA and	
	LAD heals and then bringing the	
	LIMA down to the LAD.	
Fig. (15)	The da Vinci Robotic System.	56
Fig. (16)	A camera port is introduced in the	61
	left fifth intercostal space along	
	the anterior axillary line.	
	Instrument ports are then	
	inserted through the third and	
	seventh intercostal spaces.	

Figure	Title	Page
No.		No.
Fig. (17)	Strategies for providing venous	68
	drainage during minimally	
	invasive Port Access.	
Fig. (18)	EndoClamp aortic catheter	71
	advanced through the Y-shaped	
	EndoReturn arterial cannula,	
	which is placed into the right	
	femoral artery.	
Fig. (19)	Positioning of Endo aortic balloon	72
	catheter.	
Fig. (20)	The Chitwood clamp is placed	74
	percutaneously via an additional	
	incision.	
Fig. (21)	Three cm skin incision is done just	80
	above the medial aspect of the	
	knee joint.	
Fig. (22)	After the vein is identified, a	81
	balloon tip trocar is inserted into	
	the incision and the tunnel is	
	inflated with carbon dioxide.	

Figure	Title	Page
No.		No.
Fig. (23)	The conical dissection cone is	81
	advanced toward the groin on the	
	anterior surface of the vein under	
	videoscopic visualization.	
Fig. (24)	The collateral branches are	82
	isolated and divided with bipolar	
	electrocautery.	
Fig. (25)	Proximal saphenous vein ligation	83
	is performed through a separate	
	"stab and grab" incision at the	
	extremity of the tunnel.	
Fig. (26)	A 2 to 3 cm longitudinal incision is	96
	made proximal to the wrist crease	
	over the radial artery under direct	
	vision.	
Fig. (27)	The endoscope with the conical tip	98
	is advanced over the anterior	
	pedicle enough to allow insertion	
	of the BTT port.	
Fig. (28)	Anterior endoscopic radial artery	99
	dissection, the radial artery and	
	the comitantes veins of each side	
	are dissected as a pedicle	

Figure	Title	Page
No.		No.
Fig. (29)	Lateral endoscopic radial artery	100
	dissection, and collateral vessels.	
Fig. (30)	Capture the branches between the	102
	HemoPro jaws for radial artery	
	colateral branch ligation.	
Fig. (31)	Removing the harvested radial	104
	artery. The proximal portion of	
	the radial artery is ligated.	

A Historical Perspective

After some isolated cases of direct myocardial revas cularization performed by Goetz in 1961 and years later by Kolessov, myocardial revascularization was standardized by Favaloro and others using cardiopulmonary bypass and cardioplegic arrest. (1)

In 1975, Trapp and Bisarya published for the first time a consecutive series of 63 patients who were operated on without cardiopulmonary bypass. In this landmark paper, the authors presented the bases of beating-heart revascularization technique system to maintain myocardial including a perfusion with a perfusion catheter and some maneuvers to stabilize the heart to perform the distal anastomosis. At that time, it was considered dangerous and/or impossible to completely occlude the coronary arterv without perioperative myocardial infarction. (1)

In 1981, Benetti and his group in Argentina, working independently, began the clinical application of beating-heart revascularization. These were the first reports describing coronary revascularization without cardiopulmonary bypass.⁽¹⁾

SA Historical Perspective &

A landmark event in the field occurred when Benetti proposed a small left thoracotomy to graft left internal thoracic artery to LAD artery, a technique that received the often confusing eponym MIDCAB, for minimally invasive direct coronary artery bypass. This procedure, widely applied and popularized by Calafiore, could be considered a natural evolution of the off pump technique, as it highlighted the minimal-access potential of coronary revascularization. (1)

......