

Ain Shams University Women's College for Arts, Science and Education Physics Department

EVALUATION OF NATURAL RADIONUCLIDES AND ELEMENTAL ANALYSIS OF DIFFERENT KINDS OF FERTILIZER USING DIFFERENT TECHNIQUES

Thesis Submitted in the partial Fulfillment For M. Sc. Degree in Physics

To
Physics Department
Faculty of Girls for Arts, Science and Education
Ain Shams University

By

Amira Adel Shenoda Nasr

B.Sc. in Physics (2007)

Under Supervision of

Prof. Dr. SAMIA MOHAMED EL BAHI

Prof. of Nuclear Physics, College of Women for Art, Science and Education, Ain Shams University

Prof. Dr. AMANY TAHA SROOR

Prof. of Nuclear Physics, College of Women for Art, Science and Education, Ain Shams University

Dr. WAFAA MAHMUD MOUSA

Ass. Prof. of Spectroscopy, College of Women for Art, Science and Education, Ain Shams University.

A Thesis for M.Sc. in Physics

Amira Adel Shenoda Nasr

Title of Thesis

EVALUATION OF NATURAL RADIONUCLIDES AND ELEMENTAL ANALYSIS OF DIFFERENT KINDS OF FERTILIZER USING DIFFERENT TECHNIQUES

Thesis Supervisors

Prof. Dr. SAMIA MOHAMED EL BAHI

Prof. of Nuclear Physics, College of Women for Art, Science and Education, Ain Shams University

Prof. Dr. AMANY TAHA SROOR

Prof. of Nuclear Physics, College of Women for Art, Science and Education, Ain Shams University

Dr. WAFAA MAHMUD MOUSA

Ass. Prof. of Spectroscopy, College of Women for Art, Science and Education, Ain Shams University.

Date of Research: / /2014 Date of Approval: / /2014

Approval Stamp:

Approval of Faculty Council: / /2014

Approval of University Council: / /2014

Student name: Amira Adel Shenoda Nasr

Scientific degree: Master in Physics

Department: Physics Department

Faculty: Faculty of Girls for Arts, Science and Education

University: Ain Shams University

Date of Graduate: Bachelor Science in Physics Science (2007)

Date of Granted: M.Sc in Physics (2014)

Ain Shams University Women's College for Arts, Science and Education

ACKNOWLEDGEMENT

First of all, I kneel humbly to **GOD** Than King him for showing the right path, with out his help my efforts would have gone astray.

I wish to express my deepest appreciation to *Prof. Dr. Samja Mohamed El Bahi*, Professor of Nuclear Physics, Ain Shams University, Women's College for Arts, Science and Education, for her supervision and planning the work, fruitful discussion and careful guidance and valuable discussion.

Particular gratitude and heartily thanks to **Prof. Dr. Amany Taha Sroor,** Professor of Nuclear Physics, Ain Shams University, Women's College for Arts, Science and Education, for the excellent supervision, stimulating suggestions, fruitful discussion and valuable revision.

Wording is not enough to express my sincere respect and cordial gratitude to *Dr. Wafaa Mahmud Mousa* Assistant Professor of Spectroscopy, Ain Shams University College of women for Art, Science and Education, for suggesting the topic of the study, kind supervision, sincere help, faithful guidance, valuable suggestions, encouragement, continuous constructive discussion and assistance during the course of research.

Special thanks for *Prof. Dr. Nadia Walley El-Dine*, Professor of Nuclear Physics, Ain Shams University, Women's College for Arts, Science and Education, and *Dr. Sawsan Hamed*, Assistant Professor of Spectroscopy, Ain Shams University, Women's College for Arts, Science and Education, for all helps during the course of research.

Special thanks for *Prof. Dr. Aisha Soliman*, Head of Physics Department, Ain Shams University, Women's College for Arts, Science and Education, for all helps and fruitful discussions and all support during analyses results.

Last, but not least, my deepest thanks and gratitude to all the **Staff Members of Physics Department, Women's College for Arts, Science and Education, Ain Shams University**.

Finally, I want to express my best thanks to all those helped me directly or indirectly to finish this work and everyone reads it. I would like to express my deep thanks to my parents, my husband, my daughter for their patience continuous encouragement and support during this work.

Amira Adel

ABSTRACT

The main target of this study is to make a comparison between different kinds of fertilizers by measure the concentration of natural radionuclide's, heavy metals and toxic substances, using different techniques.

First, The concentration of the natural radionuclides are measured in all the studying samples to find the specific radioactivity of ²³⁸U-series, ²³²Th-series and ⁴⁰K by using a high resolution gamma ray spectrometer based on coaxial HPGe detector shielded by cylinders of lead, copper and cadmium. The analysis of data is completed by using a computerized analyzer fitted with a high multichannel analyzer with high level software programs.

Fourteen samples of fertilizer were collected from different places in Egypt markets and industries.

Calculate the radiological parameters (Radium equivalent activity Ra_{eq} , Radiation level index, External hazard index H_{ex} , Internal hazard index H_{in} , Absorbed dose rate D_R and Effective dose E_{eff}) to make a comparison with the permissible international level.

The results of concentration levels are compared with similar studies carried out in other countries.

The mean activity concentrations of ²³⁸U, ²³²Th, ²²⁶Ra and ⁴⁰K for studied fertilizer samples has been observed to ranged from (9.67 to 562.10), (11.02 to 362.29), (33.41 to 1162.39) and (92.65 to 17162.88) Bq/Kg for ²³⁸U, ²³²Th, ²²⁶Ra and ⁴⁰K respectively.

The permissible activity levels for fertilizers are 50, 50 and 500 Bq/kg for ²²⁶Ra, ²³²Th and ⁴⁰K respectively as a soil but for super phosphate (SSP) and potash (PF) fertilizer are 1000, 1000 and 4000 Bq/kg for ²²⁶Ra, ²³²Th and ⁴⁰K respectively (UNSCEAR, 2000 and El-Taher & Mohamed Anwar Abdelhalim, 2013).

The concentration values of ²²⁶Ra are lower than the permissible level except samples F2, F5, F10 and F11 but for SSP and PF are lower than permissible level except F6. The concentration values of ²³²Th in all studied samples are lower than the permissible level. Also, the concentration of ⁴⁰K are lower than permissible level except samples F1, F3, F10 and F11 but for SSP and PF are lower than permissible level except F4, F9.

The values of radium equivalent of the samples vary between (42.54 to 1918.91) Bq/Kg. These values are lower than the recommended maximum value 370 Bq/Kg (Singh et al., 2005 and Huy & Luyen, 2006) except (F1, F4, F6, F9 and F10) samples.

The value of radioactivity level index Iγ vary between (0.34 and 14.22). These values are found to be less than unity except (F1, F3, F4, F6, F9, F10 and F11) samples.

The value of average external hazard index and average internal hazard index vary between (0.17 to 5.18) for H_{ex} , (0.26 to 6.44) for H_{in} . It is found to be less than unity except (F1, F4, F6, F9, F10 and F11) samples.

Also we note that the average values of dose rate for samples vary between (15.41 to 826.16) nGy/h. These values are lower than the international average mean value 59 nGy/h (UNSCEAR, 2000) except samples (F1, F3, F4, F6, F9, F10 and F11).

While, the values of the effective dose rate for samples vary between (0.01 to 1.01) mSv/y. These values are lower than the permissible limit "1mSv/y" that recommended by the International Commission Radiological Protection as the maximum annual dose to the public members except sample F9.

We noticed that there are a good correlation between (²³⁸U to ²²⁶Ra), which clear the equilibrium in the uranium series. Also there are a good correlation between (²³⁸U and ²³²Th), while there is a poor correlation between (²³²Th and ⁴⁰K) and (²³⁸U and ⁴⁰K).

The radon exhalation rates for samples are also calculated. The values of emanation factor (F) ranges from 0.31 to 0.81, emanation coefficient of Radon A_{Rn} ranged from (10.33 to 662.20) Bq/Kg and Radon mass exhalation rate E_{Rn} are ranged from (0.72 to 1616.46) mBq/Kg sec. The highest value of E_{Rn} was found in sample F6 which also has the highest 226 Ra activity.

Second, determination of heavy metals and toxic elements (Cd, Cu, Fe, Mg, Mn, Ni, Pb and Zn) using Flam Atomic Absorption Technique (FAAS).

The results show that contents of heavy metals varied significantly in different types of fertilizers like; single super phosphate (SSP), potash fertilizer (PF), zinc-sulfate (ZnSo₄), urea (URA), organic fertilizer (OF), nitrogen fertilizer (NF) and nitrogen phosphorus potassium(NPK) depending on NPK ratio and fertilizer origin.

CONTENTS

Title	Page
Abstract	I
Contents	IV
List of Tables	VIII
List of Figures	X
Chapter 1: General Introduction and Literature Review	1
(1.1.) Introduction	1
(1.2.) Importance of fertilizer	1
(1.2.1.) Labeling of Chemical Fertilizer	2
(1.3.) Types of Fertilizers	3
(A) Organic Fertilizers	5
(B) Inorganic Fertilizers	6
(B.1.) Ammonia	7
(B.2.) Rock Phosphate	7
(B.3.) Sodium Nitrates	7
(B.4.) Muriate of Potash	7
(1.4.) Background Radioactivity	8
(1.5.) Components of Background	9
(A) Cosmic Radiation	9
(B) Cosmogenic Radiation	11
(C) Terrestrial Radiation	12
(C.1) Non-Series Radionuclides	12
(C.2) Series Radionuclides	13
(D) Man-made	15
(1.6.) Heavy metals determination by FAAS	16
(1.7.) Literature Review	18

Title	Page
Chapter 2: Experimental setup and techniques	33
(2.1.) Semiconductor radiation detector	
(2.2.) Silicon detector	34
(2.3.) Germanium Detector	35
(2.3.1.) Planar configuration	38
(2.3.2.) Coaxial configuration	
(2.4.) Hyper Pure Germanium Detector	
(2.4.1.) Description of the System	42
(2.4.2.) Cryostat and Dewar	45
(2.4.3.) Detector shielding	
(2.4.4.) Preamplifier	
(2.4.5.) The spectroscopy amplifier	
(2.4.6.) The oscilloscope	
(2.4.7.) High voltage power	
(2.4.8.) The pulse – height multichannel analyzer (MCA)	
(2.5.) Radiation quantity and units	
(2.5.1.) Typical Radiation Situation	
(2.5.1.1.) The Radiation Source	53
(2.5.1.2.) The Radiation Beam	53
(2.5.1.3.) The Absorber	54
(2.5.2.) Equivalent Dose and the Effective Dose equivalent	55
(2.6.) Radioactive Equilibrium	
(A) Radionuclide has only slightly longer half-life	57
(B) Radionuclide has a much longer half-life	58
(C) Decay product has a longer half-life	59

Title	Page
(2.7.) Atomic absorption spectroscopy	59
(2.7.1.) Atomic absorption spectrometer	60
(2.7.1.1.) Spectral Light Source	61
(2.7.1.2.) The Hollow Cathode Lamp	61
(2.7.2.) The Atomic Absorption Atomizer	63
(2.7.2.1.) Premix Burner System	64
(2.7.2.2.) Optical System (Monochromator)	65
(2.7.3.) Background Correction	66
(2.7.3.1.) Method of Background Correction (The continuum Lamp Method)	66
Chapter 3: Experimental setup and techniques	68
(3.1.) Gamma ray spectrometer system	68
(3.1.1.) Sample preparation	68
(3.1.2.) Calibration of the used detection systems	68
(3.1.2.1.) Energy calibration of the HPGe spectrometer	69
(3.1.2.2.) Resolution of γ – spectrometer	71
(3.1.2.3.) Efficiency calibration of HPGe detector	73
(3.1.3.) Detection limits	77
(3.1.4.) Theoretical calculation for natural radiation	78
(3.1.4.1.) The activity concentration	78
(3.1.4.2.) Radium equivalent calculation (Raeq)	78
(3.1.4.3.) External hazard index (Hex)	79
(3.1.4.4.) Internal hazard index (Hin)	79
(3.1.4.5). Radiation level index $(I\gamma)$	80

Title	Page
(3.1.4.6.) Calculation of the absorbed dose rate (DR)	81
(3.1.4.7.) Effective dose rate (Eeff)	81
(3.1.4.8.) Radon mass exhalation rate and emanation coefficient	82
(3.2.) Atomic Absorption Technique	83
(3.2.1.) Operating Conditions	83
(3.2.2.) Analytical Calibration Function	84
Chapter 4: Results and Discussion	86
(4.1.) Introduction	86
(4.2.) Results of hyper pure germanium detector	86
(4.3.) Results of Atomic Absorption technique	100
(4.3.1.) Sample Preparation	100
(4.3.2.) Preparation of standard solution	101
(4.3.3.) Analytical Calibration Curve	101
(4.3.4.) Sensitivity	105
Conclusion	108
References	110

LIST OF TABLES

Table	Title	Page
Table (1.1.):	Altitude Dependence of Cosmic Ray Dose.	10
Table (1.2.):	Non-series Radionuclide's.	13
Table (1.3.a.):	Principal Natural Radionuclide Decay Series (Uranium Series).	14
Table (1.3.b.):	Thorium series.	14
Table (1.4.):	Examples of anthropogenic radionuclide's with long half-lives.	16
Table (2.1.):	Radiation Units and Conversion Factors.	56
Table (3.1.):	γ -ray energies of the standard radioactive sources used for energy calibration.	70
Table (3.2.):	The changing of the resolution value with the RC values.	72
Table (3.3.):	Relative efficiency of γ -rays from Ra-226 radionuclide with its short-lived gamma emitting daughters.	74
Table (3.4.):	Absolute efficiency curve of Ra-226 and its daughter γ -energy lines.	76
Table (3.5.):	The lowest limits of detection (LLD) for the radionuclides of ²³⁸ U, ²³² Th and ⁴⁰ K.	77
Table (3.6.):	Operating Conditions for elements measured by FAAS	84
Table (4.1.):	14 samples trade name and type for fertilizers.	87
Table (4.2.):	Activity concentration in (Bq/Kg) of the measured natural radionuclide's isotopes for ²³⁸ U and ²³² Th series in fertilizer samples.	88
Table (4.3.):	Activity concentration in (Bq/Kg) of ²³⁸ U, ²²⁶ Ra, ²³² Th and ⁴⁰ K for fertilizer samples.	90

Table	Title	Page
Table (4.4.):	The values of radium equivalent in (Bq/Kg), external hazard, internal hazard, radioactivity level index, dose rate (nGy/h) and effective dose rate (mSv/yr) for fertilizer samples.	94
Table (4.5.):	The values of activity of 226 Ra (C_{Ra}) in (Bq/Kg), emanation coefficient of radon C_{Rn} , emanation factor F and mass exhalation rate of radon E_{Rn} in (mBq/Kgs) for all samples.	97
Table (4.6.):	Comparison of natural radionuclide's in different types of fertilizers under investigation with those in other countries and the present work.	99
Table (4.7.):	Concentration in ppm of elements measured by FAAS	104
Table (4.8.):	The Value of Sensitivity for elements measured by FAAS.	106
Table (4.9.):	Worldwide range of toxic, major and minor elements in phosphate fertilizer comparison with the present study.	107

LIST OF FIGURES

Figure	Title	Page
Fig. (1.1.):	Plants in the soil	4
Fig. (1.2.):	Organic fertilizer	5
Fig. (1.3.):	Inorganic fertilizer (Sodium Nitrate)	8
Fig. (1.4.):	Inorganic fertilizer (Muriate of potash (potassium chloride)	8
Fig. (2.1.):	Vertical Cryostat Mounting.	37
Fig. (2.2.):	Planar HPGe detector (P- type).	38
Fig. (2.3.):	Large volume coaxial HPGe detectors.	40
Fig. (2.4.):	Extension of the depletion region for coaxial detector.	40
Fig. (2.5.):	Geometry of coaxial p-type and n-type HPGe detectors	41
Fig. (2.6.):	A block Diagram of A gamma – Ray Spectrometer.	44
Fig. (2.7.):	Modern arrangement of HPGe detector and preamp within the cryostat housing.	46
Fig. (2.8.):	Various configurations of LN2 Dewar's and cryostats.	47
Fig. (2.9.):	HPGe detector shielding	48
Fig. (2.10.):	A typical radiation set-up	52
Fig. (2.11.):	Transient equilibrium	57
Fig. (2.12.):	Secular equilibrium	58
Fig. (2.13.):	No equilibrium	59
Fig. (2.14.):	The Thermo Elemental Atomic Absorption Spectrophotometer	61
Fig. (2.15.):	The Hollow Cathode Lamp.	63