The Association of Hirsutism with Metabolic Syndrome

Thesis

Submitted for Partial Fulfillment of Master Degree in Dermatology, Venereology and Andrology

By

Mayanne Mohamed Abdel Hamid Abdel Wahab (M.B, B.Ch.)

Faculty of Medicine-Cairo University

Under Supervision of

Dr. Rania Adel Lotfy

Associate Professor of Dermatology, Venereology & Andrology Faculty of Medicine – Ain Shams University

Dr. Amgad Abu Gamra

Associate Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Dr. Azza Mohamed Esmat

Lecturer of Dermatology, Venereology & Andrology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2014

Acknowledgment

First of all, thanks to **Allah** for helping and guiding me in accomplishing this work and for everything else I have.

I would like to thank **Dr. Rania Adel Lotfy**, Assistant Professor of Dermatology and Venereology, Faculty of Medicine – Ain Shams University for her guidance and suggestions which were of great value to me.

I would like to deeply thank **Dr. Amgad Abu Gamra**, Assistant Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University for his continuous guidance and suggestions which were of great value to me, and his extreme support.

Words are not sufficient to express my sincerest appreciation and my deepest gratitude to **Dr. Azan Esmat** Moustafa, Lecturer of Dermatology and Venereology, Faculty of Medicine, Ain Shams University, for her continuous encouragement, and her precious remarks which guide me to present this work in its proper way, it was indeed an honor to have been supervised by her.

An endless thanks for my family for their support without it, I would never completed this work.

Mayanne Mohamed A. Hamid

List of Contents

Title	Page No.
List of Tables	
List of Figures	
List of Abbreviations	
Introduction	
Aim of the Work	3
Review of Literature	
Hirsutism	4
Hair anatomy	4
Hirsutism	14
Prevalence	16
Scoring	17
Pathogenesis of hirsutism	18
Aetiology of hirsutism	19
Diagnosis of hirsutism	30
Treatment	35
Metabolic Syndrome	50
Introduction	50
Prevalence	51
Pathogenesis	53
Diagnostic criteria	
Risk factors	
Recommendations for treatment	63
Metabolic syndrome and Hirsutism	68
Patients and Methods	69
Results	88
Discussion	116
Summary	
Conclusion	
Recommendations	
References	
Arabic summary	

List of Tables

Table No.	Title	Page No.
Table (1):	History and physical examination in	
m 11 (0)	evaluation of hirsutism	
Table (2):	Signs of virilization	
Table (3):	Causes of hirsutism, assoc	
	laboratory findings and recomme	
Table (4):	additional testing	
Table (4):	Patients' age in Group I and Group II	
Table (5): Table (6):	Family history in Group I and Group Site of distribution of hirsutism in Group	
Table (7):	Comparison between Group I and G	-
1 able (1):	II as regard the clinical data	-
Table (8):	Comparison between Group I and G	
1 abic (0).	II as regard hormone levels	_
Table (9):	Comparison of Group I and Group	
Tuble (b).	regard FBG level and lipid profile	
Table (10):	Presence of MetS in Group I and Group	
Table (11):	Prevalence of criteria of MetS in Gro	-
` ,-	and Group II	-
Table (12):	Comparison between Group Ia, Group	
	and Group II as regard clinical data	_
Table (13):	Comparison between Group Ia, Group	
	and Group II as regard hormone level	ls 101
Table (14):	Comparison between Group Ia, Group	ıp Ib
	and Group II as regard FBG and	lipid
		103
Table (15):	Comparison of number of meta	
	syndrome criteria in Group Ia, Grou	-
	and group II	
Table (16):	Comparison between Group Ic, Grou	-
	and Group II as regard clinical data:.	
Table (17):	Comparison between Group Ic, Grou	-
	and Group II as regard hormone level	ls 106

List of Tables (Cont...)

Table No.	Title	Page	No.
Table (18):	Comparison between Group Ic, Group and Group II as regard FBG and profile	lipid	107
Table (19):	Comparison between Group Ic, Group and Group II as regard number of criteria:	ıp Id MetS	
Table (20):	Comparison between the different sit hirsutism in Group I regarding clinical data.	tes of the	110
Table (21):	Comparison between the different sit hirsutism in Group I regarding hornlevels.	tes of mone	
Table (22):	Comparison of FBG and lipid profit Group I according the site of distributism among cases:	le in ution	
Table (23):	Correlations between criteria of meta syndrome and clinical and labor data	abolic atory	

List of Figures

Fig. No.	Title F	Page No.
Figure (1):	Structure of the hair follicle	6
Figure (2):	Hair growth cycle	9
Figure (3):	Pathogenesis of the metabolic syndro	me 54
Figure (4):	Site of distribution of hirsutism Group I.	
Figure (5):	Causes of hirsutism in Group I	93
Figure (6):	Comparison between Group I and Gi II as regard hormone levels	
Figure (7):	Comparison of Group I and Group I regard FBG level and lipid profile	
Figure (8):	Presence of MetS among the st subjects	
Figure (9):	Comparison between Group Ia, Grou and Group II as regard hormone leve	-
Figure (10):	Comparison Group Ia, Group Ib Group II as regard FBG and I profile	lipid
Figure (11):	Comparison between Group Ic, Grou and Group II as regard hormone leve	-
Figure (12):	Comparison between Group Ic, Grou and Group II as regard FBG and I	ipid
	profile	100

List of Abbreviations

Abb. Meaning

5-alpha- DHT.....: 5-alpha-dihydrotestosterone **17-OHP.....:** 17-hydroxyprogesterone

ACTH: Adrenocorticotropic stimulating hormone

ADP: Adenosine-5-diphosphate

Apo B:Apolipoprotien BAR:Androgen receptor

ATP III.....: Adult treatment panel III

BMI.....: Body mass index BP.....: Blood pressure

CVD: Cardio-vascular disease

DAP: Dihydroxyacetone phosphate

DBP: Diastolic blood pressure

DHEA: Dehydroepiandrosterone

DHEA-S: Dehydroepiandrosterone-Sulfate

DHT: Dihydrotestosterone
DNA: Deoxyribonucleic acid

E 1 : Estrone **E 2** : Estradiol

List of Abbreviations (Cont...)

Abb.	Meaning
EGIR::	European Group for the study of Insulin Resistance
ELISA:	Enzyme-linked immunesorbent assay
FBG::	Fasting blood glucose
FDA:	Food and drug administration
FFA:	Free fatty acid
FSH::	Follicular stimulating hormone
G3P:	Glycerol-3-phosphate
GnRH::	Gonado-tropin releasing hormone
GPO:	Glycerol phosphate dehydrogenase
H_2O_2 :	Hydrogen peroxide
HAIR-AN syndrome:	Hyper Androgenism, Insulin Resistance and Acanthosis Nigricans syndrome
HDL-C:	High density lipoprotein-cholesterol
H-F:	Hirsutism limited to the face
H-FA:	Hirsutism in the face and abdomen
H-FAB:	Hirsutism in the face, abdomen and breast
H-FB:	Hirsutism in the face and breast
HPA-axis:	Hypothalamic pituitary axis
IDF:	International Diabetes Federation
IFG:	Impaired fasting glucose
IGT:	Impaired glucose tolerance
IH:	Idiopathic hirsutism
IL-6:	Interleukin-6
IPL:	Intense pulsed light
IR::	Insulin resistance
Laser:	Light amplification by the stimulated emission of radiation
LCL:	Lipid clearing factor
LDL-C:	Low density lipoprotein cholesterol

List of Abbreviations (Cont...)

Abb.	Meaning
LH::	Luteinizing hormone
LPL:	Lipoproteinlipase
MetS:	Metabolic syndrome
NC-AGS:	Non classic adrenogenital syndrome
NCEP:	The National Cholesterol Education Program
Nd:YAG::	Neodymium-doped yttrium aluminium garnet
NHLBI::	National Heart, Lung, and Blood Institute
OCs:	Oral contraceptives
OGTT:	Oral glucose tolerance test
PAI-1:	Plasminogen activator inhibitor-1
PCOS::	Polycystic ovary syndrome
POD::	Perioxidase
PVS:	polyvinyl sulphate
RNA:	Ribonucleic acid
SBP::	Systolic blood pressure
SHBG:	Sex hormone-binding globulin
TC:	Total cholesterol
TG:	Triglycerides
TNF- α :	Tumour necrosis alpha
TVC:	Trans-vaginal scan
UKPDS::	UK prospective diabetes study
US:	United states
WC:	Waist circumference
WHO:	World health organization

INTRODUCTION

I irsutism is defined as an increased growth of terminal hair in women in a male pattern. The prevalence of the condition is 5–25% of women in reproductive age. Hirsutism may be a manifestation of Cushing's syndrome, androgen producing tumors, or late onset adrenogenital syndrome (Non classic adrenogenital syndrome). Most hirsute women with rare endocrine diseases can be diagnosed using medical history, clinical examination, and follicular phase blood samples (Glintborg et al., 2004).

Hirsutism is caused by increased androgenicity in the pilosebacceus unit resulting in increased growth of terminal hairs. Hirsute patients have increased dermal activity of the enzyme 5 α -reductase, which is responsible for conversion of testosterone to the more potent androgen; dihydrotestosterone (DHT) (Azziz et al., 2000). High DHT levels increase terminal hair growth and therefore, 5 α-reductase inhibitors can be used for the treatment of hirsutism (Glintborg et al., 2009). Individual variations in dermal α-reductase activity may explain the often near normal testosterone levels and the lack of correlation between circulating testosterone levels and clinical hirsute manifestations (Azziz, 2000).

Ninety-five percent of hirsute patients are diagnosed either associated with polycystic ovary syndrome (PCOS) or idiopathic hirsutism (IH). PCOS is clinically defined as oligomenorrhea

associated with hyperandrogenism. IH is defined as hirsutism with regular ovulation, normal testosterone levels, and normal ovaries (Azziz, 2000). In daily practice, PCOS and IH are difficult to distinguish and the two terms probably represent a continuum. Patients with IH usually are older and leaner and have more modest metabolic and endocrine disturbances than patients with PCOS (Azziz et al., 2009).

Metabolic syndrome (MetS) is a group of abnormalities probably caused by insulin resistance (IR) with systemic hyperinsulinism. It consists of glucose intolerance or type-2 diabetes, arterial hypertension, atherosclerosis, obesity and dyslipidemia (Reaven, 1988).

The most important risk factors for the development of MetS are weight, genetics, endocrine disorders and aging. Most patients are older, obese, and sedentary and have a degree of IR. Stress can also be a contributing factor (Poulsen et al., 2001; Pollex and Hegele, 2006).

Many women with hirsutism associated with PCOS have additional features of MetS, especially IR and obesity. As MetS and PCOS are highly associated with cardiovascular disease (CVD) and type-2 diabetes, studying the association between MetS and hirsutism with PCOS may provide another clue to the clinical signs and symptoms related to both diseases, but unfortunately there is little data on population based studies on this association (Grundy, 2006; Cornier et al., 2008).

AIM OF THE WORK

The aim of this work is to assess the frequency of MetS among women with hirsutism (with and without PCOS) compared to age, sex and socioeconomic status matched control group.

Chapter (1)

HIRSUTISM

Hair anatomy

i. Structure of the hair follicle

air follicles consist of several components. The most superficial part of the hair follicle extends from the sebaceous duct to the epidermal surface. This portion includes the hair canal and the distal outer root sheath. The tubular connection between the epidermal surface and the distal part contains the hair shaft. The outer root sheath is contiguous with the basal epithelial layer. The inner root sheath is a multilayered rigid tube that is composed of terminally differentiated hair follicle keratinocytes, surrounded by the outer root sheath. It provides the conduit for the hair to exit at the skin surface, and the hair shaft itself (*Headington*, 1984; *Fuchs et al.*, 2001).

The hair is composed of keratinized epithelial cells as shown in figure (1), organized in a flexible cylinder that differ in color, thickness and length. Keratin proteins form the hair shaft that grows within the outer hair root sheath in the epidermis.

The sebaceous gland is an acinar gland composed of lipid-filled sebocytes, localized close to the insertion of the arrector pili muscle. The sebaceous gland secretes sebum to the

epidermal surface via a holocrine mechanism. Sebum helps to make hair and skin waterproof. The arrector pili muscle is a tiny smooth muscle that connects the hair follicle with the dermis, and causes, when contracted, the raising of the hair. Together with the hair follicle and the arrector pili muscle, the sebaceous gland forms the pilosebaceous unit.

The bulge is a protrusion of the outer root sheath located below the sebaceous gland at the insertion site of the muscle arrector pili. The bulge contains the hair follicle stem cells. The bulb is a thickening of the proximal end of the hair follicle, which contains undifferentiated matrix, melanocytes and outer root sheath cells. The dermal papilla, consisting of closely packed specialized mesenchymal fibroblasts, is a mesodermal signaling system within the hair follicle. The dermal papilla produces numerous paracrine factors that influence the size and color of the hair produced (*Schneider et al.*, 2009).

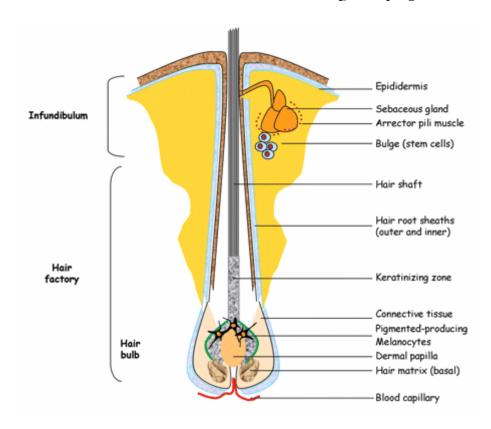


Figure (1): Structure of the hair follicle (Fuchs et al., 2001).

ii. Hair follicle morphogenesis

In humans, organization of the primitive epidermis takes place between 9 and 12 weeks of embryonic life. The master switch for hair follicle development involves canonical Wnt/ β -catenin signaling that is essential for hair follicle fate at least in mice. Communication between the developing epidermis and underlying mesenchyme plays a key role in hair differentiation as well as other ectodermal appendages, such as nails, teeth, feathers and scales (*Andl et al.*, 2002).