Evaluation of the Effects of Evening Primrose Oil on Gamma Rays-Induced Microscopical, Molecular and Biochemical Changes in Rats

Thesis

Submitted to Faculty of Science, Ain Shams University, in Fulfillment for Ph. D. Degree in Zoology (Molecular Biology)

Presented by

Reham Ahmad Aboul-Fetouh Mahmoud

M. Sc. in Zoology (2012)
Pharmacology Unit
Animal Health Research Institute (AHRI), El-dokki
Agricultural Research Centre (ARC)

Supervised by

Prof. Dr. Monir A. El-ganzuri

Emeritus Prof. of Cell Biology Zoology Department Faculty of Science Ain Shams University

Prof. Dr. Sohier S. Korraa

Emeritus Prof. of Molecular Biology Radiation Health Research Department National Centre for Radiation Research and Technology Atomic Energy Authority

Prof. Dr. Amal Abdel Rahman Zaki

Professor of Pharmacology
Pharmacology Unit
Animal Health Research Institute (AHRI), El-dokki
Agricultural Research Centre (ARC)

Dr. Samah Fekri M. A. Darwish

Assistant Professor of Molecular Biology Biotechnology Research Unit Animal Reproduction Research Institute (ARRI) Agricultural Research Centre (ARC)

2016

ACKNOWLEDGEMENTS

In the name of Allah – most graceful and most merciful – I give thanks first and mainly to Allah who enabled me to accomplish this work and blessed me with my great mentors and amazing family.

Gratitude and full appreciation to **Prof. Dr. Monir Ali El-ganzuri**, Emeritus Professor of Cell Biology,

Zoology Department, Faculty of Science, Ain Shams

University. Thanks for his valuable advice, continuous

encouragement and honorable supervision throughout this

thesis. Thanks are also to him for donating the time for the

very accurate and thorough reading and revision of the

thesis despite his countless obligations.

My deepest heart-felt gratitude and appreciation to **Prof. Dr. Sohier Saad Korraa**, Professor of Molecular Biology, National Centre for Radiation Research and Technology, Atomic Energy Authority. If it were not for her amazing guidance, support and encouragement, this work would have never seen the light. Thanks for her helpful insight, and for suggesting and enriching this topic of work.

My special thanks to **Prof. Dr. Amal Abdel rahman Zaki** Professor of Pharmacology, Pharmacology Unit,

Animal Health Research Institute (AHRI), El-dokki who offered me a lot of guidance, continuous encouragement and advice while supervision every step in this work.

I would like to express my sincere gratitude and thanks for **Dr. Samah Fekry Darwish**, Assistant Professor of Molecular Biology, Biotechnology Research Unit, Animal Reproduction Research Institute for her continuous support. Thanks to her for teaching me numerous skills and sharing all her precious knowledge and experience with me.

I would like to express my deepest thanks, gratitude and profound respect to my honored professor **Prof. Dr. Khadra Soliman**, Assistant Professor of Pathology, Pathology Department, Animal Health Research Institute (AHRI), El-dokki for her meticulous supervision. Her constant encouragement and constructive guidance were of great importance for this work.

Last but not least, I would like to thank my parents, my sister and everyone who ever helped and encouraged me to complete this thesis. My absolute love, respect and gratitude go to my parents and my sister for providing me with support, encouragement and amazing insights all the time.

CONTENTS

		Page
• LIS	T OF ABBREVIATIONS.	i
• LIS	ST OF FIGURES.	iii
• LIS	ST OF TABLES.	vii
• IN7	TRODUCTION.	1
• AIN	M OF THE WORK.	5
• RE	VIEW OF LITERATURE:	7
1. Radiati	on.	7
1.1	. Radiation-induced damage to liver.	11
1. 2	. Inflammation	13
	1.2.1. Interleukin-1 (IL-1).	15
	1.2.2. Tumour necrosis factor (TNF).	16
1.3	. Nitric oxide.	17
1.4	. Lipid peroxidation.	19
1.5	. Protein carbonyls.	20
1.6	. Antioxidants.	21
	1.6.1. Glutathione peroxidase.	21
	1.6.2. Glutathione.	24
	1.6.3. Catalase (CAT).	25
1.7	Radiation-induced damage to the liver	
1 0	functions. Padiation induced demaga to the kidney.	26
1.8.	Radiation-induced damage to the kidney functions	27

	Page
2. Evening primrose oil (EPO).	28
 MATERIALS AND METHODS. 	32
• DETERMINATION OF THE RADIATION	
DOSE.	62
• RESULTS:	
(1) The results of the histopathological study.	67
(2) The results of the molecular study.	85
(A) RNA extraction, reverse transcription	
and PCR for the housekeeping gene.	85
(B) PCR amplification of interleukin-1β (IL-1β))
mRNA.	85
(C) PCR amplification of tumour necrosis factor	r-α
$(TNF-\alpha)$ mRNA.	90
(D) PCR amplification of glutathione S-transfer	ase-π
(GST- π) mRNA.	94
(3) The results of the biochemical study:	98
(A) Nitric oxide level in the liver homogenate.	98
(B) Malondialdehyde (MDA) level in the liver	
homogenate.	100
(C) Protein carbonyls level in the liver	102
homogenate.	103
(D) Determination of the level of some	106
antioxidants:	106

	Page
(I) Total glutathione content in the liver	
homogenate.	106
(II) Catalase (CAT) activity in the liver	
homogenate.	109
(III) Catalase (CAT) activity in the blood	
plasma.	112
(E) Determination of some parameters of the liver	
functions:	115
(I) Aspartate transaminase activity (AST) in the	
blood plasma.	115
(II) Alanine transaminase activity (ALT) in the	
blood plasma.	117
(III) Alkaline phosphatase (ALP) activity in the	
blood plasma.	120
(IV) Total protein level in the blood plasma.	123
(V) Albumin level in the blood plasma.	126
(F) Determination of some parameters of the kidney	
functions:	128
(I) Urea level in the blood plasma.	128
(II) Uric acid level in the blood plasma.	131
(III) Creatinine level in the blood plasma.	133

• ARABIC ABSTRACT.

	Page
• DISCUSSION.	135
• SUMMARY AND CONCLUSION.	158
• REFERENCES.	165
• ARABIC SUMMARY.	

LIST OF ABBREVIATIONS

ALP: alkaline phosphatase.

ALT: alanine transaminase.

ANOVA: analysis of variance.

AST: aspartate transaminase.

CAT: catalase.

cDNA: complementary deoxyribonucleic acid.

DNA: deoxyribonucleic acid.

DNPH: 2, 4-dinitrophenylhydrazine.

EDTA: ethylenediaminetetraacetic acid

EPO: evening primrose oil.

GAPDH: glyceraldehyde 3-phosphate dehydrogenase.

GHCl: guanidine hydrochloride.

GNC: general nutrition corporation.

GST- π : glutathione S-transferase- π .

GST- π : mRNA of glutathione S-transferase- π .

GSH: reduced glutathione.

Gy: Gray.

IL-1β: interleukin-1β.

IL-1β: mRNA of interleukin-1β.

LSD: less significant difference.

MDA: malondialdehyde.

LIST OF ABBREVIATIONS

mRNA: messenger ribonucleic acid.

NCRRT: National Centre for Radiation Research and Technology.

NEDD: N-1-naphthyl ethylenediamine dihydrochloride.

NO: nitric oxide.

NO_x: nitrite /nitrate.

PCR: polymerase chain reaction.

RNS: reactive nitrogen species.

ROS: reactive oxygen species.

SPSS: statistical package for social science.

ssDNA: single-stranded DNA.

TBA: thiobarbituric acid.

TBE: tris borate EDTA buffer.

TCA: trichloroacetic acid.

TNF- α : tumour necrosis factor- α .

 $TNF-\alpha$: mRNA of tumour necrosis factor- α .

VCl₃: vanadium trichloride.

WBC: white blood cell.

WBI: whole body irradiation.

Fig.	Description	Page
No.		No.
1	The flower of the <i>Oenothera biennis</i> plant.	28
2	Thermo Scientific GeneRuler 50bp DNA	43
	Ladder.	
3	Standard curve of sodium nitrite.	48
4	Standard curve of MDA.	50
5	Standard curve of glutathione.	54
6	Verification of amplified PCR product of the	
	housekeeping gene "GAPDH" on 1.5%	63
	agarose gel.	
7	Verification of amplified PCR product of IL-	
	1β mRNA on 1.5% agarose gel.	63
8	Verification of amplified PCR product of	
	TNF - α mRNA on 1.5% agarose gel.	64
9	Verification of amplified PCR product of IL-	
	1β mRNA on 1.5% agarose gel.	64
10	Verification of amplified PCR product of	
	TNF - α mRNA on 1.5% agarose gel.	65
11	Verification of amplified PCR product of IL-	
	1β mRNA on 1.5% agarose gel.	65
12	Verification of amplified PCR product of	
	TNF - α mRNA on 1.5% agarose gel.	66
13	Section of liver of a normal rat (group I).	72
14	Section of liver of a normal rat treated with	
	EPO (group II).	73
15	Section of liver of a rat exposed to 10 Gy of	74-
	gamma radiation and dissected after 3 hours.	75-76
16	Section of liver of a rat exposed to 16 Gy of	
	gamma radiation and dissected after 3 hours.	76-77

Fig.	Description	Page No.
17	Section of liver of a rat treated with EPO,	110.
'	then exposed to 10 Gy of gamma radiation	78
	and dissected after 3 hours.	, 0
18	Section of liver of a rat treated with EPO,	
	then exposed to 16 Gy of gamma radiation	79
	and dissected after 3 hours.	
19	Section of liver of a rat exposed to 10 Gy	80-81
	of gamma radiation and dissected after 24	
	hours.	
20	Section of liver of a rat exposed to 16 Gy	81-82
	of gamma radiation and dissected after 24	
	hours.	
21	Section of liver of a rat treated with EPO,	82-83
	then exposed to 10 Gy of gamma radiation	
	and dissected after 24 hours	
22	Section of liver of a rat treated with EPO,	83-84
	then exposed to 16 Gy of gamma radiation	
	and dissected after 24 hours	
23	Verification of the amplified PCR product	
	of the housekeeping gene "GAPDH" on	85
	1.5% agarose gel.	
24	Verification of the amplified PCR product	
	of IL - 1β on 1.5% agarose gel.	86
25	Verification of the amplified PCR product	
	of IL - 1β on 1.5% agarose gel.	87
26	Mean \pm standard error of <i>IL-1\beta</i> mRNA in	
	the liver of all the rats' subgroups	88
	(p<0.05).	
27	Verification of the amplified PCR product	
	of TNF - α on 1.5% agarose gel.	90
28	Verification of the amplified PCR product	
	of TNF-a on 1.5% agarose gel	91

Fig.	Description	Page
No.		No.
29	Mean \pm standard error of <i>TNF</i> - α mRNA in	
	the liver of all the rats' subgroups	92
	(p<0.05).	
30	Verification of the amplified PCR product	
	of GST - π on 1.5% agarose gel.	94
31	Verification of the amplified PCR product	o =
- 22	of GST - π on 1.5% agarose gel.	95
32	Mean \pm standard error of GST - π mRNA in	0.6
	the liver of all the rats' subgroups	96
	(p<0.05).	
33	Mean ± standard error of nitric oxide	
	levels in the liver homogenates of all the	98
	rats' subgroups (p <0.05).	
34	Mean ± standard error of MDA levels in	404
	the liver homogenates of all the rats'	101
25	subgroups (p <0.05).	
35	Mean ± standard error of protein carbonyls	104
	in the liver homogenates of all the rats' subgroups (p <0.05).	104
36	Mean \pm standard error of total glutathione	
30	content in the liver homogenates of all the	107
	rats' subgroups (p <0.05).	107
37	Mean ± standard error of catalase in the	
	liver homogenates of all the rats'	110
	subgroups (p <0.05).	
38	Mean ± standard error of catalase in the	
	blood plasma of all the rats' subgroups	113
	(<i>p</i> <0.05).	
39	Mean ± standard error of AST activity in	
	the blood plasma of all the rats' subgroups	115
	(p<0.05).	

Fig.	Description	Page
No.		No.
40	Mean ± standard error of ALT activity in	
	the blood plasma of all the rats' subgroups	118
	(p<0.05).	
41	Mean ± standard error of ALP activity in	
	the blood plasma of all the rats' subgroups	121
	(p<0.05).	
42	Mean ± standard error of total protein level	
	in the blood plasma of all the rats'	124
	subgroups (p <0.05).	
43	Mean ± standard error of albumin level in	
	the blood plasma of all the rats' subgroups	126
	(p<0.05).	
44	Mean ± standard error of urea level in the	
	blood plasma of all the rats' subgroups	129
	(<i>p</i> <0.05).	
45	Mean ± standard error of uric acid level in	101
	the blood plasma of all the rats' subgroups	131
	(p<0.05).	
46	Mean ± standard error of creatinine level	
	in the blood plasma of all the rats'	133
	subgroups (p <0.05).	

LIST OF TABLES

LIST OF TABLES

Table	Description	Page
No.		No.
1	The treatment of the different groups and	35
	subgroups used in the study.	
	The effect of evening primrose oil on <i>IL</i> -	
2	1β mRNA levels in the liver of male	89
	albino rats irradiated with gamma	
	radiation (n=10).	
	The effect of evening primrose oil on	
3	TNF - α mRNA levels in the liver of male	93
	albino rats irradiated with gamma	
	radiation (n=10).	
	The effect of evening primrose oil on	
4	GST - π mRNA levels in the liver of male	97
	albino rats irradiated with gamma	
	radiation (n=10).	
_	The effect of evening primrose oil on	00
5	nitric oxide levels in the liver	99
	homogenates of male albino rats	
	irradiated with gamma radiation (n=10).	
6	The effect of evening primrose oil on	102
0	malondialdehyde (MDA) levels in the liver homogenates of male albino rats	102
	irradiated with gamma radiation (n=10).	
	The effect of evening primrose oil on	
7	protein carbonyls levels in the liver	105
,	homogenates of male albino rats	103
	irradiated with gamma radiation (n=10).	
	The effect of evening primrose oil on	
8	total glutathione levels in the liver	108
	homogenates of male albino rats	
	irradiated with gamma radiation (n=10).	

LIST OF TABLES

Table	Description	Page
No.		No.
9	The effect of evening primrose oil on catalase levels in the liver homogenates of male albino rats irradiated with gamma radiation (n=10).	111
10	The effect of evening primrose oil on catalase levels in the blood plasma of male albino rats irradiated with gamma radiation (n=10).	114
11	The effect of evening primrose oil on AST levels in the blood plasma of male albino rats irradiated with gamma radiation (n=10).	116
12	The effect of evening primrose oil on ALT levels in the blood plasma of male albino rats irradiated with gamma radiation (n=10).	119
13	The effect of evening primrose oil on ALP levels in the blood plasma of male albino rats irradiated with gamma radiation (n=10).	122
14	The effect of evening primrose oil on total protein levels in the blood plasma of male albino rats irradiated with gamma radiation (n=10).	125
15	The effect of evening primrose oil on albumin levels in the blood plasma of male albino rats irradiated with gamma radiation (n=10).	127
16	The effect of evening primrose oil on urea levels in the blood plasma of male albino rats irradiated with gamma radiation (n=10)	130