

Ain Shams University
Faculty of Women for Arts, Science & Education
Zoology Department

Study on the Pathogenesis of Experimental Nonalcoholic Fatty Liver Disease (NAFLD) in Rats as a One of Metabolic Syndrome and Possible Amelioration Effects of some Promising Antioxidants

Submitted in Partial Fulfillment for the Requirements for the Degree of Master of Science in Zoology

By

Dina Mohamed Islam Ahmed Heibashy

Demonstrator in Zoology Department Faculty of Women for Arts, Science & Education Ain Shams University

Prof. Dr. Fatma Mohamed Abd El-Moneim Zahran

Prof. of Physiology.
Zoology Department.
Faculty of Women for Arts, Science & Education
Ain Shams University.

Dr. Mona Ismail Shahin Dr. Neiven Atef Kelada

Assit. Prof. of Physiology.
Zoology Department
Faculty of Women for Arts, Science & Education
Ain Shams University.

Lecturer of Physiology
Zoology Department
Faculty of Women for Arts, Science & Education
Ain Shams University.

(2016)

QUALIFICATION

Name: Dina Mohamed Islam Ahmed Heibashy

Scientific Degree: M.Sc.

Department: Zoology

Faculty : Faculty of Women for Arts, Science

and Education

University: Ain Shams University

Job: Demonstrator in Zoology Department

Faculty of Women for Arts, Science & Education

Ain Shams University

Graduation Year : 2011

Courses

Courses studied by the candidate in partial fulfillment of the requirements of the degree of M.Sc.:

- 1. Histology.
- 2. Physiology.
- 3. Histopathology.
- 4. Molecular Biology.
- 5. Statistics.
- 6. English language.
- 7. Computer.

APPROVAL SHEET

Name: Dina Mohamed Islam Ahmed Heibashy

Title: Study on the Pathogenesis of Experimental Non-alcoholic Fatty Liver Disease (NAFLD) in Rats as a One of Metabolic Syndrome and Possible Amelioration Effects of some Promising Antioxidants.

Scientific Degree: M.Sc.

Board of Scientific Supervision

Prof. Dr. Fatma Mohamed Abd El-Moneim Zahran

Prof. of Physiology, Zoology Department.
Faculty of Women for Arts, Science & Education.
Ain Shams University.

Dr. Mona Ismail Shahin

Assit. Prof. of Physiology, Zoology Department. Faculty of Women for Arts, Science & Education. Ain Shams University.

Dr. Neiven Atef Kelada

Lecturer of Physiology, Zoology Department. Faculty of Women for Arts, Science & Education. Ain Shams University.

ACKNOWLEDGMENT

First of all, I am eternally indebted to "ALLAH", who gave me strength and introduced me to the best people who helped in initiating and completing this work.

I would like to express my sincere gratitude and grateful acknowledgment to *Professor Dr. Fatma Mohamed Abd El-Moneim Zahran*, Professor of Physiology, Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, for her patience, thoughtfulness, guidance, close supervision, helpful and fruitful advice, encouragement during preparation of this work, continuous assistance during the investigation, like none I have ever encountered. She tided me over many difficulties throughout the work, suggesting, planning and reading the manuscript and constructively criticizing, resulting in the accomplishment of the present thesis. The content contained within is clearly a reflection of her ability as a mentor without whom this work would not be possible. Her constant dedication to the profession is inspiring and I have learned the knowledge and skills needed for a successful future. For that, I am eternally grateful for her sincere guidance.

Any word would not be sufficient to express my deepest gratitude and appreciation for the great efforts of *Dr. Mona Ismail Shahin*, Assistant Professor of Physiology, Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, for her supervision, constructive advice, encouragement and constructive comment. To him I shall be forever grateful and thankful.

It is a pleasure to express my great thanks and deepest gratitude to *Dr. Neiven Atef Kelada*, Lecturer of Physiology, Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, for encouragement and her sincere help in this work.

I wish also to express my deepest thanks to all my colleagues and the staff members of Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University.

Especially thanks to my father (*Prof Dr. Mohamed Islam Heibashy*), whose sacrifice with his time, support, patience and taking care of me to make me successful. I am really indebted to my family [*Mother, my Brothers (Ahmed & Mahmoud), my love Husband (Mohamed) and my Son (Omar)]* who took every step they could afford for my studies and always appreciated me and prayed for my success.

Abstract

Non-alcoholic fatty liver disease (NAFLD) represents one of the most common liver diseases. It is strongly associated with obesity and insulin resistance and thought to be parameters of the metabolic syndrome. NAFLD can progress to non-alcoholic steatohepatitis then to cirrhosis and liver failure. This study aimed to investigate whether silymarin or/and taurine can improve non-alcoholic fatty liver in an animal model and whether this therapeutic approach resulted in amelioration in carbohydrates profile (serum glucose, insulin, insulin resistance index and hepatic glycogen), lipids profile (serum total cholesterol, triglycerides, free fatty acids, leptin, adiponectin and hepatic total lipids & cholesterol), liver function profile (serum aspartate transaminase, alanine transaminase, total protein, albumin and haptoglobin) and cytokines profile (serum tumor necrosis factor-a, interleukin-1\beta and interleukin-6). The obtained results revealed a significant (p<0.001) increase in carbohydrates profile (glucose, insulin, insulin resistance index & hepatic glycogen) in NAFLD rats than those in their control ones. Lipid parameters (serum cholesterol, triglycerides, free fatty acids and leptin as well as hepatic total lipids and cholesterol) were significantly (p<0.001) elevated in NAFLD rats compared with their corresponding control group. On the other hand, induction of NAFLD to rats caused a significant (p<0.001) decrease in adiponectin level. Liver function tests (serum aspartate transaminase, alanine transaminase and haptoglobin) were significantly (p<0.001) increased in NAFLD rats compared with their corresponding control group. But, the levels of serum total protein and albumin were remarkable decreased in NAFLD rats group. A considerable (p<0.001) elevation were occurred in all cytokines parameters (serum tumor necrosis factor-a, interleukin-1\beta and interleukin-6) in NAFLD rats group compared with their corresponding control group.

When, NAFLD rats group was treated with silymarin or/and taurine, a considerable amelioration effects in all previous studied parameters were pronounced dependent on certain mechanisms and time of treatment.

In conclusion, silymarin or/and taurine reduced metabolic abnormalities associated with NAFLD via inhibition the oxidative stress, increment in the stabilization of mitochondrial membrane, reduction the lipid accumulation in the liver, enhancement in the endoplasmic reticulum (ER) and improving insulin resistance. Overall, silymarin and taurine showed as promising and novel therapies for the treatment of NAFLD.

Key Words: Non-Alcoholic Fatty Liver Disease / Metabolic Syndrome / Silymarin / Taurine / Rats.

Contents

Serial	Title	Page
	List of Tables	i
	List of Figures	ii
	List of Abbreviations	iv
	Introduction	1
	Aim of the work	4
	Review of literature	5
A	The liver	5
В	Liver injury	5
С	Nonalcoholic fatty liver disease (NAFLD)	6
1	Etiology of NAFID	8
2	Pathogeneses of NAFLD	11
3	Oxidative stress in NAFLD	12
4	The role of free fatty acids in NAFLD	13
5	The role of insulin and it's receptors in NAFLD	14
6	The role of leptin and it's receptors in NAFLD	16
7	The role of adiponectin and it's receptors in NAFLD	17
8	The role of cytokines in NAFLD	18
D	Fructose induces NAFLD	21
1	Fructose metabolism	21
2	Fructose-Feeding as a Model of Metabolic Syndrome	22
3	Fructose Consumption and Insulin Resistance	23
4	Fructose Consumption and Oxidative Stress	24
5	Fructose is a highly lipogenic nutrient	24
E	Therapeutic strategy for treatment of NAFLD	25
1	Silymarin (Milk Thistle)	26
a	Chemistry structure of silymarin	26
b	Pharmacokinetics of silymarin	28
с	Experimental pharmacology of silymarin	28
d	Action mechanisms of silymarin	29
i	Antioxidant properties	29
ii	Stimulation of liver regeneration	30
iii	Anti-inflammatory actions of silymarin	30

Serial	Title	Page
iv	Anti-fibrotic action of silymarin	30
v	Role of silymarin on liver damage	31
vi	Adverse effects of silymarin	31
vii	Role of silymarin on NAFLD	32
2	Taurine	35
a	Occurrence in nature	35
b	Chemical structure of taurine	36
c	Synthesis of taurine	36
d	Physiological properties of taurine	38
e	Biological roles of taurine	38
f	Osmoregulation and cellular tonicity	39
g	Taurine as antioxidant	39
h	Hepatoprotective effect of taurine	40
i	Hypolipidemic effect of taurine	41
j	Role of taurine on NAFLD	43
	Material & Methods	44
I	Material	44
A	Experimental animals	44
В	Material used in induction of experimental NAFLD in rats	44
i	Fructose	44
ii	Lard	45
С	Experimental antioxidants	45
i	Silymarin (Milk Thistle)	45
ii	Taurine	45
D	Experimental design	45
II	Methods	46
A	Carbohydrates profile	46
1	Determination of serum glucose level	46
2	Determination of serum insulin level	48
3	Determination of HOMA value	50
4	Determination of liver glycogen content	50
В	Lipids profile	52

Serial	Title	Page
1	Determination of serum and tissue cholesterol levels	52
2	Determination of serum triglycerides level	52
3	Determination of serum free fatty acids level	54
4	Determination of serum leptin level	55
5	Determination of serum adiponectin level	57
6	Determination of liver total lipids and cholesterol contents	60
С	Liver function profile	62
1	1-Determinati on of serum aspartate aminotransferase (AST) activity	62
2	Determination of serum alanine aminotransferase (ALT) activity	63
3	Determination of serum total protein concentration	64
4	Determination of serum albumin concentration	66
5	Determination of serum haptoglobin (HP) level	67
D	Cytokines profile	69
1	Determination of serum tumour necrosis factor-alpha (TNF-α) level	69
2	Determination of serum interleukin-1ß (IL-1ß) level	72
3	Determination of serum interleukin-6 (IL-6) level	74
III	Statistical analysis	76
	Results	77
I	Induction of non-alcoholic fatty liver disease (NAFLD) on	78
1	Carbohydrates profile	78
2	Lipids profile	80
3	Liver function profile	83
4	Cytokines profile	86
II	Therapeutic role of silymarin or taurine and their mixture on	88
1	Carbohydrates profile in NAFLD	88
2	Lipids profile in NAFLD	93
3	Liver function profile in NAFLD	101
4	Cytokines profile in NAFLD	107
	Discussion	111

Serial	Title	Page
	Summary & Conclusion	131
	References	175
	Arabic Summary	

List of Tables

No	Title	Page
1	A comparison between normal and non alcoholic fatty liver disease (NAFLD) rats groups on carbohydrates profile related to insulin resistance (Mean±SE).	78
2	A comparison between normal and non alcoholic fatty liver disease (NAFLD) rats groups on lipids profile related to insulin resistance (Mean±SE).	80
3	A comparison between normal and non alcoholic fatty liver disease (NAFLD) rats groups on serum liver function profile related to insulin resistance (Mean±SE).	83
4	A comparison between normal and non alcoholic fatty liver disease (NAFLD) rats groups on serum cytokines profile related to insulin resistance (Mean±SE).	86
5	Amelioration effects of silymarin, taurine and their mixture on carbohydrates profile in NAFLD rats groups (Mean±SE).	90
6	Amelioration effects of silymarin, taurine and their mixture on lipids profile in NAFLD rats groups (Mean±SE).	96
7	Amelioration effects of silymarin, taurine and their mixture on serum liver function profile in NAFLD rats groups (Mean \pm SE).	103
8	Amelioration effects of silymarin, taurine and their mixture on serum cytokines profile in NAFLD rats groups (Mean±SE).	108

List of Figures

No.	Title	Page
1	Natural history of non alcoholic fatty liver disease (NAFLD).	7
2	The two hit theory of NAFLD progression.	8
3	Potential mechanisms for fructose-induced insulin resistance.	24
4	Silymarin (Milk Thistle) and plant extract.	۲7
5	Chemical structures of the components of silymarin.	۲7
6	(A) Chemical structure of taurine and (B) synthesis of taurine.	٣7
7	Shows a comparison between normal and non alcoholic fatty liver disease (NAFLD) rats groups on carbohydrates profile related to insulin resistance (X-syndrome).	۷9
8	Shows a comparison between normal and non alcoholic fatty liver disease (NAFLD) rats groups on serum total cholesterol, triglycerides and free fatty acids levels related to insulin resistance (X-syndrome).	81
9	Shows a comparison between normal and non alcoholic fatty liver disease (NAFLD) rats groups on serum leptin and adiponectin levels related to insulin resistance (X-syndrome).	82
10	Shows a comparison between normal and non alcoholic fatty liver disease (NAFLD) rats groups on the contents of total lipids and cholesterol in the liver tissue related to insulin resistance (X-syndrome).	82
11	Shows a comparison between normal and non alcoholic fatty liver disease (NAFLD) rats groups on serum AST and ALT activities related to insulin resistance (X-syndrome).	84
12	Shows a comparison between normal and non alcoholic fatty liver disease (NAFLD) rats groups on serum total protein, albumin and haptoglobin levels related to insulin resistance (X-syndrome).	85
13	Shows a comparison between normal and non alcoholic fatty liver disease (NAFLD) rats groups on serum cytokines profile related to insulin resistance (X-syndrome).	87
14	Shows the amelioration effects of silymarin, taurine and their mixture on serum glucose level in NAFLD rats groups.	91
15	Shows the amelioration effects of silymarin, taurine and their mixture on serum insulin level in NAFLD rats groups.	91
16	Shows the amelioration effects of silymarin, taurine and their mixture on HOMA-IR level in NAFLD rats groups.	٩2
17	Shows the amelioration effects of silymarin, taurine and their mixture on liver glycogen content in NAFLD rats groups.	٩2