WASTEWATER TREATMENT USING MODIFIED NATRUAL POLYMER

By

MagedAhmed Shaker Hassen

B.Sc. Faculty of Sci. (Chemistry), Helwan University, 2008

A Thesis Submitted in partial fulfillment
Of
The Requirement for the Master Degree
In
Environmental Science

Department of Environmental Basic Science Institute of Environmental Studies & Research Ain Shams University

APPROVAL SHEET

WASTEWATER TREATMENT USING MODIFIED NATRUAL POLYMER

 $\mathbf{B}\mathbf{y}$

Maged Ahmed Shaker Hassen B.Sc. Faculty of Sci. (Chemistry), Helwan University, 2008

This Thesis towards Master Degree in Environmental Science

Has Been Approved by:

Name Signature

WASTEWATER TREATMENT USING MODIFIED NATRUAL POLYMER

By Maged Ahmed Shaker Hassen

B.Sc. Faculty of Science, Chemistry department, Helwan University, 2008

A Thesis Submitted in partial fulfillment of the Requirement for the Master Degree
In Environmental Science
Department of Environmental Basic Science
Institute of Environmental Studies & Research
Ain shams university

Under the Supervision of: Prof. Dr / Mostafa M. H. Khalil

Prof. of Inorganic and Analytical Chemistry, Faculty of Science, Ain- Shams University

Dr/ Gamal Abdel Aziz Meligi

Associate prof of Organic Chemistry, Faculty of Science, Ain- Shams University

Prof. Dr / Amr El-Hag Ali

Professor of Radiation Chemistry, National Center for Radiation Research & Technology, Atomic Energy Authority

Acknowledgement

Praise to Allah, the most gracious and the merciful who guides us to the right way. First of all I would like to thank Allah who helped me during my work and only by his will, this work was accomplished.

I would like to express my deep gratitude to my master thesis supervisor **Prof. Dr. Mostafa M. H. Khali,** Prof. of Inorganic and Analytical Chemistry, Faculty of Science, Ain- Shams University. I have learned many things since I became Dr. **Mostafa's** student. He spends very much time instructing me how to search literature, how to choose the point for research, how to collect data, how to carry out practical work, how to write a paper and how to overcome problems originated during the work. He gave help and support throughout all steps of this master thesis from choosing the research point to writing and revision of this thesis.

I am also grateful to **Prof. Dr. Gamal Abdel Aziz Meligi,** Associate prof of Organic Chemistry, Faculty of Science, Ain Shams University for his help and support throughout all the research steps. he supervised me in the practical work and writing the master thesis .he spent a lot of Time reading and revising this thesis.

Deepest gratitude is owed to *Prof. Dr.* Amr.El-Hag Ali *Professor of Radiation Chemistry National Center for Radiation Research and Technology Atomic Energy Authority for his sincere guidance, capable supervision, assistance and valuable discussion throughout this work*

I thank my lab mates and all my coworkers for their help and good cooperation with me. Finally, I would like to thank all the members of my family; especially the spirit of my parents.

Maged Ahmed Shaker

Abstract

Polysaccharides are ideal ecofriendly materials. They surround us in every conceivable form. They are the most important constituents of food, clothing, structural materials and are also of special usage as adhesive, matrix for controlled drug release, flocculant, adsorbents, etc.

Chemical modifications of polysaccharide result in fine tuning of its properties which opens up the possibility of diverse applications. One of the most effective methods of chemical modification is grafting with synthetic polymeric materials. The resulting hybrid material can have tailor-made properties optimized towards any particular application.

High energy radiation initiated method (gamma rays or electron beam) is a more convenient method for graft copolymer synthesis. In many cases of synthesis, it is the only method fit as a candidate for commercial production. However, the high energy radiations make no distinction between the bonds to be broken and the bonds essential for structural integrity of the preformed/backbone polymer.

The monomers, acrylamide and acrylic acid, was graft copolymerized onto Carboxymethyl cellulose (CMC) using gamma rays as initiator.

The structure of pure CMC and grafted with monomers was characterized by FTIR spectra, SEM and DSC analysis, The effect of various factors affecting grafting, such as concentration of the monomer and dose of gamma rays were studied to achieve the optimum grafting parameters.

Adsorption processes do not add undesirable by-products and have been found to be superior to other techniques for wastewater treatment in terms of simplicity of design and operation, and insensitivity of toxic substances.

The results obtained show that the prepared substrates can be used in the wastewater treatment.

The grafted Carboxymethyl cellulose (CMC) was examined and optimized for its dosage level (100mg/L), optimum pH level (pH 7), contact time (90 minutes) and applied against wastewater samples, removal efficiencies for total suspended solids, chemical oxygen demand, biochemical oxygen demand, total nitrogen, ammonia, phosphate, oil& grease and sulphide found to be: 80, 70, 55.8, 48.3, 36.8, 60, 43.4 and 41.6%, respectively.

CONTENTS

	Page
Abstract	
Chapter 1	
Introduction	
1.1 Problem Statement.	1
1.2 Existing Situation in Egypt	1
1.3. Wastewater treatment	3
1.3.1. Backgrounds for process of wastewater treatment	3
1.3.2. Untreated wastewater environmental impact	4
1.3.3. Composition of domestic wastewater	5
1.3.4. Wastewater Strength	6
1.4. Wastewater treatment processes	7
1.4.1. Preliminary treatment	7
1.4.2. Primary treatment	8
1.4.3. Secondary treatment	8
1.4 .4. Tertiary treatment	9
1.5. Adsorption	10
1.5.1. Adsorption phenomenon	10
1.5.2. Types of adsorbents	12
1.6. Natural polymers	13
1.6.1. Cellulose	14
1.6.2. Applications of Cellulose Graft Copolymers	16
1.7. Grafting	17
1.7.1. Gamma radiation and electron-beam radiation	18
1.7.2. Monomers used for grafting	18
1.8. Aim of the study	19
Chapter 2	
Literature Review	
2. Hydrogels synthesis and characterization	20
2.1. Chemical synthesis of hydrogels	20
2.2. Radiation synthesis of hydrogels	26
Chapter 3	
Materials and Experimental techniques	
3.1. Materials.	32
3.2 .General procedures for preparation of grafted cotton	32
and Carboxymethyl cellulose	
3.2.1 Preparation of AAm/Cotton cellulose	32

3.2.2. Preparation of AAc/Cotton cellulose	32
3.2.3. Preparation of AAm/AAc/Cotton cellulose	33
3.2.4. Preparation of AAc/CMC hydrogels	33
3.2.5. Preparation of AAm/CMC hydrogels	33
3.2.6. Preparation of AAc/ AAm /CMC hydrogels	34
3.3. Analysis and Measurements	34
3.3.1. The percent of grafting G%	34
3.3.2. Adsorption studies	34
3.3.3. Experimental Set up	35
3.3.4. Measurements	35
3.3.4.1. Total Suspended Solids (TSS)	36
3.3.4.2. Chemical Oxygen Demand (COD)	37
3.3.4.3. Biochemical Oxygen Demand (BOD ₅)	37
3.3.4.4. Ammonia nitrogen (NH ₃)	38
3.3.4.5. Oil and grease	39
3.3.4.6. Phosphate	39
3.3.4.7. Total nitrogen	41
3.4. Instrumentation	41
3.4.1. Infrared analysis	41
3.4.2. Differential scanning calorimeter (DSC)	41
3.4.3. Scanning electron microscope(SEM)	42
3.4.4. UV– Vis Spectrometer Absorbance	42
3.4.5. pH measurement	42
3.4.6 .Gamma radiation treatment	42
3.5. Approach of samples technique	43
Chapter 4	
Results and Discussion	
4.1. Grafted natural polymer	44
4 .1.1.Grafted Cotton.	44
4.1.1.1 Effect of polymer Concentration	44
4.1.1.2. Effect of monomer concentration on the Grafting	45
percent	
4.1.1.2.1. Cotton grafted with acrylamide	45
4.1.1.1.2. Cotton grafted with acrylic acid	46
4.1.1.3. Cotton grafted with acrylic acid / Acrylamide	46
comonomers	
4.1.1.3. Effect of gamma irradiation dose on grafting	48
percent	4.0
4.1.1.3.1. Cotton grafted with acrylamide	48
4.1.1.3.2. Cotton grafted with acrylic acid	49
4.1.1.3.3. Cotton grafted with acrylic acid / Acrylamide	49

comonomers composition (30%)	
4.1.2. Grafted CMC	5
4.1.2.1. Effect of monomer concentration on the Grafting	5
percent	
4.1.2.1.1. C MC grafted with acrylamide	5
4.1.2.1.2. CMC grafted with acrylic acid	5
4.1.2.1.3. CMC grafted with acrylic acid /Acrylamide	5
comonomer	
4.1.2.2. Effect of gamma irradiation dose on grafting	5
percent	
4.1.2.2.1. C MC grafted with acrylamide	5
4.1.2.2.2. C MC grafted with acrylic acid	5
4.1.2.2.3. CMC grafted with acrylic acid /Acrylamide	5
comonomer	
4.2. Comparison between different grafting ratios of	5
Cotton and CMC	
4.3. Characterization and some selected properties of the	5
grafted CMC	
4.3.1. Fourier transforms infrared spectroscopy (FT-IR)	5
4.3.2. Differential scanning calorimetry (DSC)	6
4.3.3. Scanning Electron Microscope (SEM)	6
4.4. Effect of grafted carboxymethyl cellulose on the	
removal percent of Total Suspended Solids and Chemical	
Oxygen Demand	6
4.4.1. Effects of Operational Parameters	6
4.4.1.1. Effect of pH	6
4.4.1.1.1On total suspended solids (TSS)	6
4.4.1.1.2. On chemical oxygen demand (COD)	6
4.4.1.2. Effect of Dose	7
4.4.1.2.1. On total suspended solids (TSS)	7
4.5.1.2.2. On chemical oxygen demand (COD)	7
4.4.1.3. Effect of contact time	7
4.4.1.3.1. On total suspended solids (TSS)	7
4.4.1.3.2. On chemical oxygen demand (COD)	7
4.5. Application of the prepared hydrogels for wastewater	
treatment	7
Summary	7
References	8

LIST OF TABLES

Гable	Title	Page
no		no
1	Typical Characteristics of Domestic Wastewater	7
2	Comparison between different grafting ratios of Cotton and CMC	58
3	A summary of the main influent parameters after the treatment	77

LIST OF FIGURES

Figure	Title]
no		
Fig 1 Fig 2	Basic terms of adsorption Cellobioseunit:two -D-glucopyranose units joined togetherby $\beta 1$, 4-glycosidic linkage	
Fig 3	Reaction scheme of the carboxymethylation of cellulose	
Fig 4	Schematic representation of a graft polymer on a polymer backbone	
Fig 5	Monomers used for grafting	
Fig 6 Fig 7	Simple flow diagram of Abu Rawash treatment plant Effect of AAm monomer concentration on the grafting percent of AAm/cotton at irradiation dose 25kGy	
Fig 8	Effect of AAc monomer content on the grafting percent of AAc/cotton at irradiation dose 25kGy	
Fig 9	Effect of AAm and AA comonomers composition on the grafting percent of AAm/AAc /cotton at irradiation dose 25 kGy	
Fig 10	Effect of irradiation dose on the grafting percent of 30 % AAm/Cotton	
Fig 11	Effect of irradiation dose on the grafting percent of 30 % AAc/Cotton	
Fig 12	Effect of irradiation dose on the grafting percent of 30 % AAc/AAm/Cotton composition	
Fig 13 Fig 14	Carboxymethyl cellulose polysaccharide Effect of AAm monomer content on the grafting percent of AAm/CMC at irradiation dose 25kGy	
Fig 15	Effect of AAC monomer content on the grafting percent of AAC/CMC at irradiation dose 25kGy	
Fig 16	Effect of AAm and AAc comonomers composition (1:1) on the grafting percent of AAm/AAc/CMC at irradiation dose 25kGy	
Fig 17	Effect of irradiation dose on the grafting percent of 30 % AAm/CMC	
Fig 18	Effect of irradiation dose on the grafting percent of 30 % AAc/CMC	
Fig 19	Effect of irradiation dose on the grafting percent of 30 % AAc/AAm/CMC	

20	FTIR spectra of CMC (A), CMC-g-AAc(B),CMC-g-	59
	AAm(C) and CMC-g- co-(AAm/AAc	
21	Differential scanning calorimetry curves of CMC (A),	62
	CMC-g- AAm(B),CMC-g-AAc(C) and CMC-g-	
	AAm/AA(D)	
22	H-bond complex formation and molecular configuration	63
	of copolymer of acrylic acid and acrylamide	
23	(23) Scanning Electron Microscope of CMC (A), CMC-	65
	g-AAm (B), CMC-g-AAc (C) and CMC-g-AAm/AAc	
	(D)	
24	Effect of pH on total suspended solids removal percent	68
25	Effect of pH on COD Removal percent	69
26	Effect of Adsorbent weight on TSS removal percent	71
27	Effect of Adsorbent weights on COD removal percent	72
28	Effect of Contact Time on TSS removal percent	73
29	Effect of Contact Time on COD removal percent	74
	221 222 23 24 25 26 27 28	AAm(C) and CMC-g- co-(AAm/AAc

LIST OF ABBREVATIONS

AAc	Acrylic acid
AAm	Acrylamide
APHA	American Public Health Association
As	Arsenic
BOD	Biochemical Oxygen Demand
BPC	bamboo pulp cellulose
CaCO ₃	Calcium carbonate
CAN	ceric ammonium nitrate
Cd	Cadmium
CFP	Cities Feeding People
CMC	Carboxymethyl cellulose
COD	Chemical Oxygen Demand
CR	Congo red
CS	Chitosan
DB	Disperse Blue
DMAEMA	2-(dimethylamino) ethyl methacrylate
DSC	differential scanning calorimetry
EDS	Energy dispersive spectrometer
EV	Electron volt
FESEM	field emission scanning electro micrsocopic
FTIR	Fourier transform infrared
G%	graft yield
GE%	graft efficiency
H_2S	Hdrogen Sulphide
Hg	Mercury
IR	Infra red Spectroscopic analysis.
kGy	Kilo gray
LDPE	low-density polyethylene
MeV	Million electron volt
MG	malachite green chloride
Mg/l	Milligram /liter
MO	methyl Orange
MP	methylene blue
MS	medical stone
MV	Methyl Violet
MWCNT	multiwalled carbon nanotubes
NaA	partially neutralized acrylic acid

NH ₃ -N	Ammonia
nm	Nonometetr
OMMT	organic montmorillonite
PAM	polyacrylamide
PAN	poly acrylonitrile
Pb	Lead
Se	Selenium
SEM	Scanning electron microscopy
TDS	Total Dissolved Solids
Tg	Glass transition temperature
TGA	Thermogravimetry analysis
Tm	Temperature of the crystalline melting
TN	Total nitrogen
TP	Total Phosphorous
TSS	Total suspended solids
VAc	vinyl acetate
XRD	X-ray diffraction

CHAPTER -1 Introduction

CHAPTER 1 INTRODUCTION

1.1. Problem Statement

One of the most challenges facing Egypt nowadays is Water resources shortage and environmental degradation. Untreated Wastewater is one of the biggest sources of pollution and had a negative effect on major public health in many developing countries. Urgent techniques for wastewater treatment are needed as soon as possible with low cost due to limited financial resources available. About two-thirds of the population in developing countries has no sanitation service and suitable sanitation for disposing excreta (Rose, 1999).

The greatest challenge facing most of the countries next two decades in water and sanitation sector is searching for economical wastewater treatment technique, that may help in reuse of treated effluents for agricultural and industrial purposes (Maria and Mayrina, 2011).

1.2. Existing Situation in Egypt

Quick population rise, fast urbanization, unequal distribution of residents, government strategy to reclaim new land, water consumption because of supplying drinking water to villages and water unsustainable were the majors environmental challenges facing our society (**Abdel Wahaab and Omar, 2012**).

Serious water pollution problems and negative impacts on health were caused by development of water supply networks in towns, villages and cities without the parallel construction of new sewage system.

In Egypt, wastewater treatment in small communities and /or rural areas lags far behind potable water supply. Only small part rural areas about 5%